示例#1
0
def test_copy_constructor():
    v = [0]
    s = selector(ifs=v)
    scpy = selector(s)
    assert_equals(s.get_ifs(), scpy.get_ifs())
    scpy.set_beams(v)
    assert_not_equals(s.get_beams(), scpy.get_beams())
示例#2
0
def test_add():
    v = [0]
    s1 = selector(ifs=v)
    s2 = selector(beams=v)
    s3 = s1 + s2
    assert_equals(s3.get_ifs(), v)
    assert_equals(s3.get_beams(), v)
    assert_not_equals(id(s3), id(s1))
    assert_not_equals(id(s3), id(s2))
示例#3
0
文件: asapmath.py 项目: schiebel/casa
def calnod(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
    """
    Do full (but a pair of scans at time) processing of GBT Nod data
    calibration.
    Adopted from  GBTIDL's getnod
    Parameters:
        scantab:     scantable
        scannos:     a pair of scan numbers, or the first scan number of the pair
        smooth:      box car smoothing order
        tsysval:     optional user specified Tsys value
        tauval:      optional user specified tau value (not implemented yet)
        tcalval:     optional user specified Tcal value
        verify:       Verify calibration if true
    """
    varlist = vars()
    from asap._asap import stmath
    from asap._asap import srctype
    stm = stmath()
    stm._setinsitu(False)

    # check for the appropriate data
##     s = scantab.get_scan('*_nod*')
##     if s is None:
##         msg = "The input data appear to contain no Nod observing mode data."
##         raise TypeError(msg)
    s = scantab.copy()
    sel = selector()
    sel.set_types( srctype.nod )
    try:
        s.set_selection( sel )
    except Exception, e:
        msg = "The input data appear to contain no Nod observing mode data."
        raise TypeError(msg)
示例#4
0
def constructor(d):
    p = selector(**d)
    for k, v in d.items():
        meth = getattr(p, 'get_%s' % k)
    val = v
    if not hasattr(val, "__len__"):
        val = [val]
    assert_equals(meth(), val)
示例#5
0
文件: asapgrid.py 项目: schiebel/casa
 def createTableIn(self, tab):
     del self.tablein
     self.tablein = scantable(tab, average=False)
     if self.ifno < 0:
         ifno = self.tablein.getif(0)
         #print 'ifno=',ifno
     else:
         ifno = self.ifno
     sel = selector()
     sel.set_ifs(ifno)
     self.tablein.set_selection(sel)
     self.nchan = len(self.tablein._getspectrum(0))
     self.nrow = self.tablein.nrow()
     del sel
示例#6
0
文件: asapgrid.py 项目: schiebel/casa
 def createTableIn( self, tab ):
     del self.tablein
     self.tablein = scantable( tab, average=False )
     if self.ifno < 0:
         ifno = self.tablein.getif(0)
         #print 'ifno=',ifno
     else:
         ifno = self.ifno
     sel = selector()
     sel.set_ifs( ifno )
     self.tablein.set_selection( sel )
     self.nchan = len(self.tablein._getspectrum(0))
     self.nrow = self.tablein.nrow()
     del sel
示例#7
0
def _array2dOp(scan,
               value,
               mode="ADD",
               tsys=False,
               insitu=None,
               skip_flaggedrow=False):
    """
    This function is workaround on the basic operation of scantable
    with 2 dimensional float list.

    scan:    scantable operand
    value:   float list operand
    mode:    operation mode (ADD, SUB, MUL, DIV)
    tsys:    if True, operate tsys as well
    insitu:  if False, a new scantable is returned.
             Otherwise, the array operation is done in-sitsu.
    skip_flaggedrow: skip operation for row-flagged spectra.
    """
    if insitu is None: insitu = rcParams['insitu']
    nrow = scan.nrow()
    s = None
    from asap._asap import stmath
    stm = stmath()
    stm._setinsitu(insitu)
    if len(value) == 1:
        s = scantable(stm._arrayop(scan, value[0], mode, tsys,
                                   skip_flaggedrow))
    elif len(value) != nrow:
        raise ValueError('len(value) must be 1 or conform to scan.nrow()')
    else:
        from asap._asap import stmath
        if not insitu:
            s = scan.copy()
        else:
            s = scan
        # insitu must be True as we go row by row on the same data
        stm._setinsitu(True)
        basesel = s.get_selection()
        # generate a new selector object based on basesel
        sel = selector(basesel)
        for irow in range(nrow):
            sel.set_rows(irow)
            s.set_selection(sel)
            if len(value[irow]) == 1:
                stm._unaryop(s, value[irow][0], mode, tsys, skip_flaggedrow)
            else:
                #stm._arrayop( s, value[irow], mode, tsys, 'channel' )
                stm._arrayop(s, value[irow], mode, tsys, skip_flaggedrow)
        s.set_selection(basesel)
    return s
示例#8
0
文件: asapmath.py 项目: schiebel/casa
def _array2dOp( scan, value, mode="ADD", tsys=False, insitu=None, skip_flaggedrow=False):
    """
    This function is workaround on the basic operation of scantable
    with 2 dimensional float list.

    scan:    scantable operand
    value:   float list operand
    mode:    operation mode (ADD, SUB, MUL, DIV)
    tsys:    if True, operate tsys as well
    insitu:  if False, a new scantable is returned.
             Otherwise, the array operation is done in-sitsu.
    skip_flaggedrow: skip operation for row-flagged spectra.
    """
    if insitu is None: insitu = rcParams['insitu']
    nrow = scan.nrow()
    s = None
    from asap._asap import stmath
    stm = stmath()
    stm._setinsitu(insitu)
    if len( value ) == 1:
        s = scantable( stm._arrayop( scan, value[0], mode, tsys, skip_flaggedrow ) )
    elif len( value ) != nrow:
        raise ValueError( 'len(value) must be 1 or conform to scan.nrow()' )
    else:
        from asap._asap import stmath
        if not insitu:
            s = scan.copy()
        else:
            s = scan
        # insitu must be True as we go row by row on the same data
        stm._setinsitu( True )
        basesel = s.get_selection()
        # generate a new selector object based on basesel
        sel = selector(basesel)
        for irow in range( nrow ):
            sel.set_rows( irow )
            s.set_selection( sel )
            if len( value[irow] ) == 1:
                stm._unaryop( s, value[irow][0], mode, tsys, skip_flaggedrow )
            else:
                #stm._arrayop( s, value[irow], mode, tsys, 'channel' )
                stm._arrayop( s, value[irow], mode, tsys, skip_flaggedrow )
        s.set_selection(basesel)
    return s
示例#9
0
def calps(scantab,
          scannos,
          smooth=1,
          tsysval=0.0,
          tauval=0.0,
          tcalval=0.0,
          verify=False):
    """
    Calibrate GBT position switched data
    Adopted from GBTIDL getps
    Currently calps identify the scans as position switched data if source
    type enum is pson or psoff. The data must contains 'CAL' signal
    on/off in each integration. To identify 'CAL' on state, the source type 
    enum of poncal and poffcal need to be present.

    Parameters:
        scantab:       scantable
        scannos:       list of scan numbers
        smooth:        optional box smoothing order for the reference
                       (default is 1 = no smoothing)
        tsysval:       optional user specified Tsys (default is 0.0,
                       use Tsys in the data)
        tauval:        optional user specified Tau
        tcalval:       optional user specified Tcal (default is 0.0,
                       use Tcal value in the data)
        verify:        Verify calibration if true
    """
    varlist = vars()
    # check for the appropriate data
    ##    s = scantab.get_scan('*_ps*')
    ##     if s is None:
    ##         msg = "The input data appear to contain no position-switch mode data."
    ##         raise TypeError(msg)
    s = scantab.copy()
    from asap._asap import srctype
    sel = selector()
    sel.set_types(srctype.pson)
    try:
        scantab.set_selection(sel)
    except Exception, e:
        msg = "The input data appear to contain no position-switch mode data."
        raise TypeError(msg)
示例#10
0
文件: asapmath.py 项目: schiebel/casa
def almacal( scantab, scannos=[], calmode='none', verify=False ):
    """
    Calibrate ALMA data

    Parameters:
        scantab:       scantable
        scannos:       list of scan number
        calmode:       calibration mode

        verify:        verify calibration
    """
    from asap._asap import stmath
    stm = stmath()
    selection=selector()
    selection.set_scans(scannos)
    orig = scantab.get_selection()
    scantab.set_selection(orig+selection)
##     ssub = scantab.get_scan( scannos )
##     scal = scantable( stm.almacal( ssub, calmode ) )
    scal = scantable( stm.almacal( scantab, calmode ) )
    scantab.set_selection(orig)
    return scal
示例#11
0
def almacal(scantab, scannos=[], calmode='none', verify=False):
    """
    Calibrate ALMA data

    Parameters:
        scantab:       scantable
        scannos:       list of scan number
        calmode:       calibration mode

        verify:        verify calibration
    """
    from asap._asap import stmath
    stm = stmath()
    selection = selector()
    selection.set_scans(scannos)
    orig = scantab.get_selection()
    scantab.set_selection(orig + selection)
    ##     ssub = scantab.get_scan( scannos )
    ##     scal = scantable( stm.almacal( ssub, calmode ) )
    scal = scantable(stm.almacal(scantab, calmode))
    scantab.set_selection(orig)
    return scal
示例#12
0
def calnod(scantab,
           scannos=[],
           smooth=1,
           tsysval=0.0,
           tauval=0.0,
           tcalval=0.0,
           verify=False):
    """
    Do full (but a pair of scans at time) processing of GBT Nod data
    calibration.
    Adopted from  GBTIDL's getnod
    Parameters:
        scantab:     scantable
        scannos:     a pair of scan numbers, or the first scan number of the pair
        smooth:      box car smoothing order
        tsysval:     optional user specified Tsys value
        tauval:      optional user specified tau value (not implemented yet)
        tcalval:     optional user specified Tcal value
        verify:       Verify calibration if true
    """
    varlist = vars()
    from asap._asap import stmath
    from asap._asap import srctype
    stm = stmath()
    stm._setinsitu(False)

    # check for the appropriate data
    ##     s = scantab.get_scan('*_nod*')
    ##     if s is None:
    ##         msg = "The input data appear to contain no Nod observing mode data."
    ##         raise TypeError(msg)
    s = scantab.copy()
    sel = selector()
    sel.set_types(srctype.nod)
    try:
        s.set_selection(sel)
    except Exception, e:
        msg = "The input data appear to contain no Nod observing mode data."
        raise TypeError(msg)
示例#13
0
文件: asapmath.py 项目: schiebel/casa
def calps(scantab, scannos, smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
    """
    Calibrate GBT position switched data
    Adopted from GBTIDL getps
    Currently calps identify the scans as position switched data if source
    type enum is pson or psoff. The data must contains 'CAL' signal
    on/off in each integration. To identify 'CAL' on state, the source type 
    enum of poncal and poffcal need to be present.

    Parameters:
        scantab:       scantable
        scannos:       list of scan numbers
        smooth:        optional box smoothing order for the reference
                       (default is 1 = no smoothing)
        tsysval:       optional user specified Tsys (default is 0.0,
                       use Tsys in the data)
        tauval:        optional user specified Tau
        tcalval:       optional user specified Tcal (default is 0.0,
                       use Tcal value in the data)
        verify:        Verify calibration if true
    """
    varlist = vars()
    # check for the appropriate data
##    s = scantab.get_scan('*_ps*')
##     if s is None:
##         msg = "The input data appear to contain no position-switch mode data."
##         raise TypeError(msg)
    s = scantab.copy()
    from asap._asap import srctype
    sel = selector()
    sel.set_types( srctype.pson )
    try:
        scantab.set_selection( sel )
    except Exception, e:
        msg = "The input data appear to contain no position-switch mode data."
        raise TypeError(msg)
示例#14
0
文件: asapmath.py 项目: schiebel/casa
            # calculate a scaling factor using the formula
            # -> tsys use to dosigref

    #ress = dosigref(sig, ref, smooth, tsysval)
    ress = dosigref(sig, ref, smooth, tsysval, tauval)
    ###
    if verify:
        # get data
        import numpy
        precal={}
        postcal=[]
        keys=['ps','ps_calon','psr','psr_calon']
        types=[srctype.pson,srctype.poncal,srctype.psoff,srctype.poffcal]
        ifnos=list(ssub.getifnos())
        polnos=list(ssub.getpolnos())
        sel=selector()
        for i in range(2):
            #ss=ssuboff.get_scan('*'+keys[2*i])
            ll=[]
            for j in range(len(ifnos)):
                for k in range(len(polnos)):
                    sel.set_ifs(ifnos[j])
                    sel.set_polarizations(polnos[k])
                    sel.set_types(types[2*i])
                    try:
                        #ss.set_selection(sel)
                        ssuboff.set_selection(sel)
                    except:
                        continue
                    #ll.append(numpy.array(ss._getspectrum(0)))
                    ll.append(numpy.array(ssuboff._getspectrum(0)))
示例#15
0
def calfs(scantab,
          scannos=[],
          smooth=1,
          tsysval=0.0,
          tauval=0.0,
          tcalval=0.0,
          verify=False):
    """
    Calibrate GBT frequency switched data.
    Adopted from GBTIDL getfs.
    Currently calfs identify the scans as frequency switched data if source
    type enum is fson and fsoff. The data must contains 'CAL' signal
    on/off in each integration. To identify 'CAL' on state, the source type 
    enum of foncal and foffcal need to be present.

    Parameters:
        scantab:       scantable
        scannos:       list of scan numbers
        smooth:        optional box smoothing order for the reference
                       (default is 1 = no smoothing)
        tsysval:       optional user specified Tsys (default is 0.0,
                       use Tsys in the data)
        tauval:        optional user specified Tau
        verify:        Verify calibration if true
    """
    varlist = vars()
    from asap._asap import stmath
    from asap._asap import srctype
    stm = stmath()
    stm._setinsitu(False)

    #    check = scantab.get_scan('*_fs*')
    #    if check is None:
    #        msg = "The input data appear to contain no Nod observing mode data."
    #        raise TypeError(msg)
    s = scantab.get_scan(scannos)
    del scantab

    resspec = scantable(stm._dofs(s, scannos, smooth, tsysval, tauval,
                                  tcalval))
    ###
    if verify:
        # get data
        ssub = s.get_scan(scannos)
        #ssubon = ssub.get_scan('*calon')
        #ssuboff = ssub.get_scan('*[^calon]')
        sel = selector()
        sel.set_types([srctype.foncal, srctype.foffcal])
        ssub.set_selection(sel)
        ssubon = ssub.copy()
        ssub.set_selection()
        sel.reset()
        sel.set_types([srctype.fson, srctype.fsoff])
        ssub.set_selection(sel)
        ssuboff = ssub.copy()
        ssub.set_selection()
        sel.reset()
        import numpy
        precal = {}
        postcal = []
        keys = ['fs', 'fs_calon', 'fsr', 'fsr_calon']
        types = [srctype.fson, srctype.foncal, srctype.fsoff, srctype.foffcal]
        ifnos = list(ssub.getifnos())
        polnos = list(ssub.getpolnos())
        for i in range(2):
            #ss=ssuboff.get_scan('*'+keys[2*i])
            ll = []
            for j in range(len(ifnos)):
                for k in range(len(polnos)):
                    sel.set_ifs(ifnos[j])
                    sel.set_polarizations(polnos[k])
                    sel.set_types(types[2 * i])
                    try:
                        #ss.set_selection(sel)
                        ssuboff.set_selection(sel)
                    except:
                        continue
                    ll.append(numpy.array(ss._getspectrum(0)))
                    sel.reset()
                    #ss.set_selection()
                    ssuboff.set_selection()
            precal[keys[2 * i]] = ll
            #del ss
            #ss=ssubon.get_scan('*'+keys[2*i+1])
            ll = []
            for j in range(len(ifnos)):
                for k in range(len(polnos)):
                    sel.set_ifs(ifnos[j])
                    sel.set_polarizations(polnos[k])
                    sel.set_types(types[2 * i + 1])
                    try:
                        #ss.set_selection(sel)
                        ssubon.set_selection(sel)
                    except:
                        continue
                    ll.append(numpy.array(ss._getspectrum(0)))
                    sel.reset()
                    #ss.set_selection()
                    ssubon.set_selection()
            precal[keys[2 * i + 1]] = ll
            #del ss
        #sig=resspec.get_scan('*_fs')
        #ref=resspec.get_scan('*_fsr')
        sel.set_types(srctype.fson)
        resspec.set_selection(sel)
        sig = resspec.copy()
        resspec.set_selection()
        sel.reset()
        sel.set_type(srctype.fsoff)
        resspec.set_selection(sel)
        ref = resspec.copy()
        resspec.set_selection()
        sel.reset()
        for k in range(len(polnos)):
            for j in range(len(ifnos)):
                sel.set_ifs(ifnos[j])
                sel.set_polarizations(polnos[k])
                try:
                    sig.set_selection(sel)
                    postcal.append(numpy.array(sig._getspectrum(0)))
                except:
                    ref.set_selection(sel)
                    postcal.append(numpy.array(ref._getspectrum(0)))
                sel.reset()
                resspec.set_selection()
        del sel
        # plot
        asaplog.post()
        asaplog.push(
            'Plot only first spectrum for each [if,pol] pairs to verify calibration.'
        )
        asaplog.post('WARN')
        p = new_asaplot()
        rcp('lines', linewidth=1)
        #nr=min(6,len(ifnos)*len(polnos))
        nr = len(ifnos) / 2 * len(polnos)
        titles = []
        btics = []
        if nr > 3:
            asaplog.post()
            asaplog.push('Only first 3 [if,pol] pairs are plotted.')
            asaplog.post('WARN')
            nr = 3
        p.set_panels(rows=nr, cols=3, nplots=3 * nr, ganged=False)
        for i in range(3 * nr):
            b = False
            if i >= 3 * nr - 3:
                b = True
            btics.append(b)
        for i in range(nr):
            p.subplot(3 * i)
            p.color = 0
            title = 'raw data IF%s,%s POL%s' % (
                ifnos[2 * int(i / len(polnos))],
                ifnos[2 * int(i / len(polnos)) + 1], polnos[i % len(polnos)])
            titles.append(title)
            #p.set_axes('title',title,fontsize=40)
            ymin = 1.0e100
            ymax = -1.0e100
            nchan = s.nchan(ifnos[2 * int(i / len(polnos))])
            edge = int(nchan * 0.01)
            for j in range(4):
                spmin = min(precal[keys[j]][i][edge:nchan - edge])
                spmax = max(precal[keys[j]][i][edge:nchan - edge])
                ymin = min(ymin, spmin)
                ymax = max(ymax, spmax)
            for j in range(4):
                if i == 0:
                    p.set_line(label=keys[j])
                else:
                    p.legend()
                p.plot(precal[keys[j]][i])
            p.axes.set_ylim(ymin - 0.1 * abs(ymin), ymax + 0.1 * abs(ymax))
            if not btics[3 * i]:
                p.axes.set_xticks([])
            p.subplot(3 * i + 1)
            p.color = 0
            title = 'sig data IF%s POL%s' % (ifnos[2 * int(i / len(polnos))],
                                             polnos[i % len(polnos)])
            titles.append(title)
            #p.set_axes('title',title)
            p.legend()
            ymin = postcal[2 * i][edge:nchan - edge].min()
            ymax = postcal[2 * i][edge:nchan - edge].max()
            p.plot(postcal[2 * i])
            p.axes.set_ylim(ymin - 0.1 * abs(ymin), ymax + 0.1 * abs(ymax))
            if not btics[3 * i + 1]:
                p.axes.set_xticks([])
            p.subplot(3 * i + 2)
            p.color = 0
            title = 'ref data IF%s POL%s' % (ifnos[2 * int(i / len(polnos)) +
                                                   1], polnos[i % len(polnos)])
            titles.append(title)
            #p.set_axes('title',title)
            p.legend()
            ymin = postcal[2 * i + 1][edge:nchan - edge].min()
            ymax = postcal[2 * i + 1][edge:nchan - edge].max()
            p.plot(postcal[2 * i + 1])
            p.axes.set_ylim(ymin - 0.1 * abs(ymin), ymax + 0.1 * abs(ymax))
            if not btics[3 * i + 2]:
                p.axes.set_xticks([])
        for i in range(3 * nr):
            p.subplot(i)
            p.set_axes('title', titles[i], fontsize='medium')
        x = raw_input('Accept calibration ([y]/n): ')
        if x.upper() == 'N':
            p.quit()
            del p
            return scantab
        p.quit()
        del p
    ###
    resspec._add_history("calfs", varlist)
    return resspec
示例#16
0
文件: asapmath.py 项目: schiebel/casa
def calfs(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
    """
    Calibrate GBT frequency switched data.
    Adopted from GBTIDL getfs.
    Currently calfs identify the scans as frequency switched data if source
    type enum is fson and fsoff. The data must contains 'CAL' signal
    on/off in each integration. To identify 'CAL' on state, the source type 
    enum of foncal and foffcal need to be present.

    Parameters:
        scantab:       scantable
        scannos:       list of scan numbers
        smooth:        optional box smoothing order for the reference
                       (default is 1 = no smoothing)
        tsysval:       optional user specified Tsys (default is 0.0,
                       use Tsys in the data)
        tauval:        optional user specified Tau
        verify:        Verify calibration if true
    """
    varlist = vars()
    from asap._asap import stmath
    from asap._asap import srctype
    stm = stmath()
    stm._setinsitu(False)

#    check = scantab.get_scan('*_fs*')
#    if check is None:
#        msg = "The input data appear to contain no Nod observing mode data."
#        raise TypeError(msg)
    s = scantab.get_scan(scannos)
    del scantab

    resspec = scantable(stm._dofs(s, scannos, smooth, tsysval,tauval,tcalval))
    ###
    if verify:
        # get data
        ssub = s.get_scan(scannos)
        #ssubon = ssub.get_scan('*calon')
        #ssuboff = ssub.get_scan('*[^calon]')
        sel = selector()
        sel.set_types( [srctype.foncal,srctype.foffcal] )
        ssub.set_selection( sel )
        ssubon = ssub.copy()
        ssub.set_selection()
        sel.reset()
        sel.set_types( [srctype.fson,srctype.fsoff] )
        ssub.set_selection( sel )
        ssuboff = ssub.copy()
        ssub.set_selection()
        sel.reset()
        import numpy
        precal={}
        postcal=[]
        keys=['fs','fs_calon','fsr','fsr_calon']
        types=[srctype.fson,srctype.foncal,srctype.fsoff,srctype.foffcal]
        ifnos=list(ssub.getifnos())
        polnos=list(ssub.getpolnos())
        for i in range(2):
            #ss=ssuboff.get_scan('*'+keys[2*i])
            ll=[]
            for j in range(len(ifnos)):
                for k in range(len(polnos)):
                    sel.set_ifs(ifnos[j])
                    sel.set_polarizations(polnos[k])
                    sel.set_types(types[2*i])
                    try:
                        #ss.set_selection(sel)
                        ssuboff.set_selection(sel)
                    except:
                        continue
                    ll.append(numpy.array(ss._getspectrum(0)))
                    sel.reset()
                    #ss.set_selection()
                    ssuboff.set_selection()
            precal[keys[2*i]]=ll
            #del ss
            #ss=ssubon.get_scan('*'+keys[2*i+1])
            ll=[]
            for j in range(len(ifnos)):
                for k in range(len(polnos)):
                    sel.set_ifs(ifnos[j])
                    sel.set_polarizations(polnos[k])
                    sel.set_types(types[2*i+1])
                    try:
                        #ss.set_selection(sel)
                        ssubon.set_selection(sel)
                    except:
                        continue
                    ll.append(numpy.array(ss._getspectrum(0)))
                    sel.reset()
                    #ss.set_selection()
                    ssubon.set_selection()
            precal[keys[2*i+1]]=ll
            #del ss
        #sig=resspec.get_scan('*_fs')
        #ref=resspec.get_scan('*_fsr')
        sel.set_types( srctype.fson )
        resspec.set_selection( sel )
        sig=resspec.copy()
        resspec.set_selection()
        sel.reset()
        sel.set_type( srctype.fsoff )
        resspec.set_selection( sel )
        ref=resspec.copy()
        resspec.set_selection()
        sel.reset()
        for k in range(len(polnos)):
            for j in range(len(ifnos)):
                sel.set_ifs(ifnos[j])
                sel.set_polarizations(polnos[k])
                try:
                    sig.set_selection(sel)
                    postcal.append(numpy.array(sig._getspectrum(0)))
                except:
                    ref.set_selection(sel)
                    postcal.append(numpy.array(ref._getspectrum(0)))
                sel.reset()
                resspec.set_selection()
        del sel
        # plot
        asaplog.post()
        asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
        asaplog.post('WARN')
        p=new_asaplot()
        rcp('lines', linewidth=1)
        #nr=min(6,len(ifnos)*len(polnos))
        nr=len(ifnos)/2*len(polnos)
        titles=[]
        btics=[]
        if nr>3:
            asaplog.post()
            asaplog.push('Only first 3 [if,pol] pairs are plotted.')
            asaplog.post('WARN')
            nr=3
        p.set_panels(rows=nr,cols=3,nplots=3*nr,ganged=False)
        for i in range(3*nr):
            b=False
            if i >= 3*nr-3:
                b=True
            btics.append(b)
        for i in range(nr):
            p.subplot(3*i)
            p.color=0
            title='raw data IF%s,%s POL%s' % (ifnos[2*int(i/len(polnos))],ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
            titles.append(title)
            #p.set_axes('title',title,fontsize=40)
            ymin=1.0e100
            ymax=-1.0e100
            nchan=s.nchan(ifnos[2*int(i/len(polnos))])
            edge=int(nchan*0.01)
            for j in range(4):
                spmin=min(precal[keys[j]][i][edge:nchan-edge])
                spmax=max(precal[keys[j]][i][edge:nchan-edge])
                ymin=min(ymin,spmin)
                ymax=max(ymax,spmax)
            for j in range(4):
                if i==0:
                    p.set_line(label=keys[j])
                else:
                    p.legend()
                p.plot(precal[keys[j]][i])
            p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
            if not btics[3*i]:
                p.axes.set_xticks([])
            p.subplot(3*i+1)
            p.color=0
            title='sig data IF%s POL%s' % (ifnos[2*int(i/len(polnos))],polnos[i%len(polnos)])
            titles.append(title)
            #p.set_axes('title',title)
            p.legend()
            ymin=postcal[2*i][edge:nchan-edge].min()
            ymax=postcal[2*i][edge:nchan-edge].max()
            p.plot(postcal[2*i])
            p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
            if not btics[3*i+1]:
                p.axes.set_xticks([])
            p.subplot(3*i+2)
            p.color=0
            title='ref data IF%s POL%s' % (ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
            titles.append(title)
            #p.set_axes('title',title)
            p.legend()
            ymin=postcal[2*i+1][edge:nchan-edge].min()
            ymax=postcal[2*i+1][edge:nchan-edge].max()
            p.plot(postcal[2*i+1])
            p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
            if not btics[3*i+2]:
                p.axes.set_xticks([])
        for i in range(3*nr):
            p.subplot(i)
            p.set_axes('title',titles[i],fontsize='medium')
        x=raw_input('Accept calibration ([y]/n): ' )
        if x.upper() == 'N':
            p.quit()
            del p
            return scantab
        p.quit()
        del p
    ###
    resspec._add_history("calfs",varlist)
    return resspec
示例#17
0
            # calculate a scaling factor using the formula
            # -> tsys use to dosigref

    #ress = dosigref(sig, ref, smooth, tsysval)
    ress = dosigref(sig, ref, smooth, tsysval, tauval)
    ###
    if verify:
        # get data
        import numpy
        precal = {}
        postcal = []
        keys = ['ps', 'ps_calon', 'psr', 'psr_calon']
        types = [srctype.pson, srctype.poncal, srctype.psoff, srctype.poffcal]
        ifnos = list(ssub.getifnos())
        polnos = list(ssub.getpolnos())
        sel = selector()
        for i in range(2):
            #ss=ssuboff.get_scan('*'+keys[2*i])
            ll = []
            for j in range(len(ifnos)):
                for k in range(len(polnos)):
                    sel.set_ifs(ifnos[j])
                    sel.set_polarizations(polnos[k])
                    sel.set_types(types[2 * i])
                    try:
                        #ss.set_selection(sel)
                        ssuboff.set_selection(sel)
                    except:
                        continue
                    #ll.append(numpy.array(ss._getspectrum(0)))
                    ll.append(numpy.array(ssuboff._getspectrum(0)))
示例#18
0
文件: opacity.py 项目: schiebel/casa
def skydip(data,
           averagepol=True,
           tsky=300.,
           plot=False,
           temperature=288,
           pressure=101325.,
           humidity=0.5):
    """Determine the opacity from a set of 'skydip' obervations.
    This can be any set of observations over a range of elevations,
    but will ususally be a dedicated (set of) scan(s).
    Return a list of 'n' opacities for 'n' IFs. In case of averagepol
    being 'False' a list of 'n*m' elements where 'm' is the number of
    polarisations, e.g.
    nIF = 3, nPol = 2 => [if0pol0, if0pol1, if1pol0, if1pol1, if2pol0, if2pol1]

    The opacity is determined by fitting a first order polynomial to:


        Tsys(airmass) = p0 + airmass*p1

    where

        airmass = 1/sin(elevation)

        tau =  p1/Tsky

    Parameters:
        data:       a list of file names or scantables or a single
                    file name or scantable.
        averagepol: Return the average of the opacities for the polarisations
                    This might be useful to set to 'False' if one polarisation
                    is corrupted (Mopra). If set to 'False', an opacity value
                    per polarisation is returned.
        tsky:       The sky temperature (default 300.0K). This might
                    be read from the data in the future.
        plot:       Plot each fit (airmass vs. Tsys). Default is 'False'
    """
    # quiten output
    verbose = rcParams["verbose"]
    rcParams["verbose"] = False
    try:
        if plot:
            from matplotlib import pylab
        scan = _import_data(data)
        f = fitter()
        f.set_function(poly=1)
        sel = selector()
        basesel = scan.get_selection()
        inos = scan.getifnos()
        pnos = scan.getpolnos()
        opacities = []
        om = model(temperature, pressure, humidity)
        for ino in inos:
            sel.set_ifs(ino)
            opacity = []
            fits = []
            airms = []
            tsyss = []
            if plot:
                pylab.cla()
                pylab.ioff()
                pylab.clf()
                pylab.xlabel("Airmass")
                pylab.ylabel(r"$T_{sys}$")
            for pno in pnos:
                sel.set_polarisations(pno)
                scan.set_selection(basesel + sel)
                freq = scan.get_coordinate(0).get_reference_value() / 1e9
                freqstr = "%0.4f GHz" % freq
                tsys = scan.get_tsys()
                elev = scan.get_elevation()
                airmass = [1. / math.sin(i) for i in elev]
                airms.append(airmass)
                tsyss.append(tsys)
                f.set_data(airmass, tsys)
                f.fit()
                fits.append(f.get_fit())
                params = f.get_parameters()["params"]
                opacity.append(params[1] / tsky)
            if averagepol:
                opacities.append(sum(opacity) / len(opacity))
            else:
                opacities += opacity
            if plot:
                colors = ['b', 'g', 'k']
                n = len(airms)
                for i in range(n):
                    pylab.plot(airms[i], tsyss[i], 'o', color=colors[i])
                    pylab.plot(airms[i], fits[i], '-', color=colors[i])
                    pylab.figtext(0.7,
                                  0.3 - (i / 30.0),
                                  r"$\tau_{fit}=%0.2f$" % opacity[i],
                                  color=colors[i])
                if averagepol:
                    pylab.figtext(0.7,
                                  0.3 - (n / 30.0),
                                  r"$\tau_{avg}=%0.2f$" % opacities[-1],
                                  color='r')
                    n += 1
                pylab.figtext(0.7,
                              0.3 - (n / 30.0),
                              r"$\tau_{model}=%0.2f$" %
                              om.get_opacities(freq * 1e9),
                              color='grey')

                pylab.title("IF%d : %s" % (ino, freqstr))

                pylab.ion()
                pylab.draw()
                raw_input("Hit <return> for next fit...")
            sel.reset()

        scan.set_selection(basesel)
        if plot:
            pylab.close()
        return opacities
    finally:
        rcParams["verbose"] = verbose
示例#19
0
文件: opacity.py 项目: schiebel/casa
def skydip(data, averagepol=True, tsky=300., plot=False,
           temperature=288, pressure=101325., humidity=0.5):
    """Determine the opacity from a set of 'skydip' obervations.
    This can be any set of observations over a range of elevations,
    but will ususally be a dedicated (set of) scan(s).
    Return a list of 'n' opacities for 'n' IFs. In case of averagepol
    being 'False' a list of 'n*m' elements where 'm' is the number of
    polarisations, e.g.
    nIF = 3, nPol = 2 => [if0pol0, if0pol1, if1pol0, if1pol1, if2pol0, if2pol1]

    The opacity is determined by fitting a first order polynomial to:


        Tsys(airmass) = p0 + airmass*p1

    where

        airmass = 1/sin(elevation)

        tau =  p1/Tsky

    Parameters:
        data:       a list of file names or scantables or a single
                    file name or scantable.
        averagepol: Return the average of the opacities for the polarisations
                    This might be useful to set to 'False' if one polarisation
                    is corrupted (Mopra). If set to 'False', an opacity value
                    per polarisation is returned.
        tsky:       The sky temperature (default 300.0K). This might
                    be read from the data in the future.
        plot:       Plot each fit (airmass vs. Tsys). Default is 'False'
    """
    # quiten output
    verbose = rcParams["verbose"]
    rcParams["verbose"] = False
    try:
        if plot:
            from matplotlib import pylab
        scan = _import_data(data)
        f = fitter()
        f.set_function(poly=1)
        sel = selector()
        basesel = scan.get_selection()
        inos = scan.getifnos()
        pnos = scan.getpolnos()
        opacities = []
        om = model(temperature, pressure, humidity)
        for ino in inos:
            sel.set_ifs(ino)
            opacity = []
            fits = []
            airms = []
            tsyss = []
            if plot:
                pylab.cla()
                pylab.ioff()
                pylab.clf()
                pylab.xlabel("Airmass")
                pylab.ylabel(r"$T_{sys}$")
            for pno in pnos:
                sel.set_polarisations(pno)
                scan.set_selection(basesel+sel)
                freq = scan.get_coordinate(0).get_reference_value()/1e9
                freqstr = "%0.4f GHz" % freq
                tsys = scan.get_tsys()
                elev = scan.get_elevation()
                airmass = [ 1./math.sin(i) for i in elev ]
                airms.append(airmass)
                tsyss.append(tsys)
                f.set_data(airmass, tsys)
                f.fit()
                fits.append(f.get_fit())
                params = f.get_parameters()["params"]
                opacity.append(params[1]/tsky)
            if averagepol:
                opacities.append(sum(opacity)/len(opacity))
            else:
                opacities += opacity
            if plot:
                colors = ['b','g','k']
                n = len(airms)
                for i in range(n):
                    pylab.plot(airms[i], tsyss[i], 'o', color=colors[i])
                    pylab.plot(airms[i], fits[i], '-', color=colors[i])
                    pylab.figtext(0.7,0.3-(i/30.0),
                                      r"$\tau_{fit}=%0.2f$" % opacity[i],
                                      color=colors[i])
                if averagepol:
                    pylab.figtext(0.7,0.3-(n/30.0),
                                      r"$\tau_{avg}=%0.2f$" % opacities[-1],
                                      color='r')
                    n +=1
                pylab.figtext(0.7,0.3-(n/30.0),
                              r"$\tau_{model}=%0.2f$" % om.get_opacities(freq*1e9),
                              color='grey')

                pylab.title("IF%d : %s" % (ino, freqstr))

                pylab.ion()
                pylab.draw()
                raw_input("Hit <return> for next fit...")
            sel.reset()

        scan.set_selection(basesel)
        if plot:
            pylab.close()
        return opacities
    finally:
        rcParams["verbose"] = verbose
示例#20
0
def test_reset():
    v = [0]
    s = selector(ifs=v)
    assert_equals(s.get_ifs(), v)
    s.reset()
    assert_true(s.is_empty())