slab = da.get_slab()
all_atom_types = get_all_atom_types(slab, atom_numbers_to_optimize)
blmin = closest_distances_generator(all_atom_types,
                                    ratio_of_covalent_radii=0.7)

comp = InteratomicDistanceComparator(n_top=n_to_optimize,
                                     pair_cor_cum_diff=0.015,
                                     pair_cor_max=0.7,
                                     dE=0.02,
                                     mic=False)

pairing = CutAndSplicePairing(slab, n_to_optimize, blmin)
mutations = OperationSelector([1., 1., 1.], [
    MirrorMutation(blmin, n_to_optimize),
    RattleMutation(blmin, n_to_optimize),
    PermutationMutation(n_to_optimize)
])

# Relax all unrelaxed structures (e.g. the starting population)
while da.get_number_of_unrelaxed_candidates() > 0:
    a = da.get_an_unrelaxed_candidate()
    a.set_calculator(EMT())
    print('Relaxing starting candidate {0}'.format(a.info['confid']))
    dyn = BFGS(a, trajectory=None, logfile=None)
    dyn.run(fmax=0.05, steps=100)
    a.info['key_value_pairs']['raw_score'] = -a.get_potential_energy()
    da.add_relaxed_step(a)

# create the population
population = Population(data_connection=da,
                        population_size=population_size,
示例#2
0
                           use_tags=True)
softmut = SoftMutation(blmin,
                       bounds=[2., 5.],
                       used_modes_file=None,
                       use_tags=True)
rotmut = RotationalMutation(blmin, fraction=0.3, min_angle=0.5 * np.pi)
rattlemut = RattleMutation(blmin,
                           n_top,
                           rattle_prop=0.3,
                           rattle_strength=0.5,
                           use_tags=True,
                           test_dist_to_slab=False)
rattlerotmut = RattleRotationalMutation(rattlemut, rotmut)
permut = PermutationMutation(n_top,
                             probability=0.33,
                             test_dist_to_slab=False,
                             use_tags=True,
                             blmin=blmin)
combmut = CombinationMutation(rattlemut, rotmut, verbose=True)
mutations = [
    strainmut, softmut, rotmut, rattlemut, rattlerotmut, permut, combmut
]

for i, mut in enumerate(mutations):
    a = [a1, a2][i % 2]
    a3 = None
    while a3 is None:
        a3, desc = mut.get_new_individual([a])

    cell = a3.get_cell()
    assert cellbounds.is_within_bounds(cell)
示例#3
0
def test_basic_example_main_run(seed, testdir):
    # set up the random number generator
    rng = np.random.RandomState(seed)

    # create the surface
    slab = fcc111('Au', size=(4, 4, 1), vacuum=10.0, orthogonal=True)
    slab.set_constraint(FixAtoms(mask=len(slab) * [True]))

    # define the volume in which the adsorbed cluster is optimized
    # the volume is defined by a corner position (p0)
    # and three spanning vectors (v1, v2, v3)
    pos = slab.get_positions()
    cell = slab.get_cell()
    p0 = np.array([0., 0., max(pos[:, 2]) + 2.])
    v1 = cell[0, :] * 0.8
    v2 = cell[1, :] * 0.8
    v3 = cell[2, :]
    v3[2] = 3.

    # Define the composition of the atoms to optimize
    atom_numbers = 2 * [47] + 2 * [79]

    # define the closest distance two atoms of a given species can be to each other
    unique_atom_types = get_all_atom_types(slab, atom_numbers)
    blmin = closest_distances_generator(atom_numbers=unique_atom_types,
                                        ratio_of_covalent_radii=0.7)

    # create the starting population
    sg = StartGenerator(slab=slab,
                        blocks=atom_numbers,
                        blmin=blmin,
                        box_to_place_in=[p0, [v1, v2, v3]],
                        rng=rng)

    # generate the starting population
    population_size = 5
    starting_population = [sg.get_new_candidate() for i in range(population_size)]

    # from ase.visualize import view   # uncomment these lines
    # view(starting_population)        # to see the starting population

    # create the database to store information in
    d = PrepareDB(db_file_name=db_file,
                  simulation_cell=slab,
                  stoichiometry=atom_numbers)

    for a in starting_population:
        d.add_unrelaxed_candidate(a)

    # XXXXXXXXXX This should be the beginning of a new test,
    # but we are using some resources from the precious part.
    # Maybe refactor those things as (module-level?) fixtures.

    # Change the following three parameters to suit your needs
    population_size = 5
    mutation_probability = 0.3
    n_to_test = 5

    # Initialize the different components of the GA
    da = DataConnection('gadb.db')
    atom_numbers_to_optimize = da.get_atom_numbers_to_optimize()
    n_to_optimize = len(atom_numbers_to_optimize)
    slab = da.get_slab()
    all_atom_types = get_all_atom_types(slab, atom_numbers_to_optimize)
    blmin = closest_distances_generator(all_atom_types,
                                        ratio_of_covalent_radii=0.7)

    comp = InteratomicDistanceComparator(n_top=n_to_optimize,
                                         pair_cor_cum_diff=0.015,
                                         pair_cor_max=0.7,
                                         dE=0.02,
                                         mic=False)

    pairing = CutAndSplicePairing(slab, n_to_optimize, blmin, rng=rng)
    mutations = OperationSelector([1., 1., 1.],
                            [MirrorMutation(blmin, n_to_optimize, rng=rng),
                             RattleMutation(blmin, n_to_optimize, rng=rng),
                             PermutationMutation(n_to_optimize, rng=rng)],
                             rng=rng)

    # Relax all unrelaxed structures (e.g. the starting population)
    while da.get_number_of_unrelaxed_candidates() > 0:
        a = da.get_an_unrelaxed_candidate()
        a.calc = EMT()
        print('Relaxing starting candidate {0}'.format(a.info['confid']))
        dyn = BFGS(a, trajectory=None, logfile=None)
        dyn.run(fmax=0.05, steps=100)
        set_raw_score(a, -a.get_potential_energy())
        da.add_relaxed_step(a)

    # create the population
    population = Population(data_connection=da,
                            population_size=population_size,
                            comparator=comp,
                            rng=rng)

    # test n_to_test new candidates
    for i in range(n_to_test):
        print('Now starting configuration number {0}'.format(i))
        a1, a2 = population.get_two_candidates()
        a3, desc = pairing.get_new_individual([a1, a2])
        if a3 is None:
            continue
        da.add_unrelaxed_candidate(a3, description=desc)

        # Check if we want to do a mutation
        if rng.rand() < mutation_probability:
            a3_mut, desc = mutations.get_new_individual([a3])
            if a3_mut is not None:
                da.add_unrelaxed_step(a3_mut, desc)
                a3 = a3_mut

        # Relax the new candidate
        a3.calc = EMT()
        dyn = BFGS(a3, trajectory=None, logfile=None)
        dyn.run(fmax=0.05, steps=100)
        set_raw_score(a3, -a3.get_potential_energy())
        da.add_relaxed_step(a3)
        population.update()

    write('all_candidates.traj', da.get_all_relaxed_candidates())
def test_bulk_operators():
    h2 = Atoms('H2', positions=[[0, 0, 0], [0, 0, 0.75]])
    blocks = [('H', 4), ('H2O', 3), (h2, 2)]  # the building blocks
    volume = 40. * sum([x[1] for x in blocks])  # cell volume in angstrom^3
    splits = {(2,): 1, (1,): 1}  # cell splitting scheme

    stoichiometry = []
    for block, count in blocks:
        if type(block) == str:
            stoichiometry += list(Atoms(block).numbers) * count
        else:
            stoichiometry += list(block.numbers) * count

    atom_numbers = list(set(stoichiometry))
    blmin = closest_distances_generator(atom_numbers=atom_numbers,
                                        ratio_of_covalent_radii=1.3)

    cellbounds = CellBounds(bounds={'phi': [30, 150], 'chi': [30, 150],
                                    'psi': [30, 150], 'a': [3, 50],
                                    'b': [3, 50], 'c': [3, 50]})

    sg = StartGenerator(blocks, blmin, volume, cellbounds=cellbounds,
                        splits=splits)

    # Generate 2 candidates
    a1 = sg.get_new_candidate()
    a1.info['confid'] = 1
    a2 = sg.get_new_candidate()
    a2.info['confid'] = 2

    # Define and test genetic operators
    pairing = CutAndSplicePairing(blmin, p1=1., p2=0., minfrac=0.15,
                                  cellbounds=cellbounds, use_tags=True)

    a3, desc = pairing.get_new_individual([a1, a2])
    cell = a3.get_cell()
    assert cellbounds.is_within_bounds(cell)
    assert not atoms_too_close(a3, blmin, use_tags=True)

    n_top = len(a1)
    strainmut = StrainMutation(blmin, stddev=0.7, cellbounds=cellbounds,
                               use_tags=True)
    softmut = SoftMutation(blmin, bounds=[2., 5.], used_modes_file=None,
                           use_tags=True)
    rotmut = RotationalMutation(blmin, fraction=0.3, min_angle=0.5 * np.pi)
    rattlemut = RattleMutation(blmin, n_top, rattle_prop=0.3, rattle_strength=0.5,
                               use_tags=True, test_dist_to_slab=False)
    rattlerotmut = RattleRotationalMutation(rattlemut, rotmut)
    permut = PermutationMutation(n_top, probability=0.33, test_dist_to_slab=False,
                                 use_tags=True, blmin=blmin)
    combmut = CombinationMutation(rattlemut, rotmut, verbose=True)
    mutations = [strainmut, softmut, rotmut,
                 rattlemut, rattlerotmut, permut, combmut]

    for i, mut in enumerate(mutations):
        a = [a1, a2][i % 2]
        a3 = None
        while a3 is None:
            a3, desc = mut.get_new_individual([a])

        cell = a3.get_cell()
        assert cellbounds.is_within_bounds(cell)
        assert np.all(a3.numbers == a.numbers)
        assert not atoms_too_close(a3, blmin, use_tags=True)

    modes_file = 'modes.txt'
    softmut_with = SoftMutation(blmin, bounds=[2., 5.], use_tags=True,
                                used_modes_file=modes_file)
    no_muts = 3
    for _ in range(no_muts):
        softmut_with.get_new_individual([a1])
    softmut_with.read_used_modes(modes_file)
    assert len(list(softmut_with.used_modes.values())[0]) == no_muts
    os.remove(modes_file)

    comparator = OFPComparator(recalculate=True)
    gold = bulk('Au') * (2, 2, 2)
    assert comparator.looks_like(gold, gold)

    # This move should not exceed the default threshold
    gc = gold.copy()
    gc[0].x += .1
    assert comparator.looks_like(gold, gc)

    # An additional step will exceed the threshold
    gc[0].x += .2
    assert not comparator.looks_like(gold, gc)
示例#5
0
assert len(slab) == len(slab2)
assert np.all(slab.get_positions() == slab2.get_positions())

dp = np.sum((top2.get_positions() - top1.get_positions())**2, axis=1)**0.5

# check that all displacements are smaller than the rattle strength we
# cannot check if 40 % of the structures have been rattled since it is
# probabilistic and because the probability will be lower if two atoms
# get too close
for p in dp:
    assert p < 0.8 * 3**0.5

# now we check the permutation mutation

mmut = PermutationMutation(n_top, probability=0.5)

c3, desc = mmut.get_new_individual([c1])
assert np.all(c1.numbers == c3.numbers)

top1 = c1[-n_top:]
top2 = c3[-n_top:]
slab2 = c3[0:(len(c1) - n_top)]

assert len(slab) == len(slab2)
assert np.all(slab.get_positions() == slab2.get_positions())
dp = np.sum((top2.get_positions() - top1.get_positions())**2, axis=1)**0.5

# verify that two positions have been changed
assert len(dp[dp > 0]) == 2
示例#6
0
def test_mutations(seed):
    from ase.ga.startgenerator import StartGenerator
    from ase.ga.utilities import closest_distances_generator
    from ase.ga.standardmutations import RattleMutation, PermutationMutation
    import numpy as np
    from ase.build import fcc111
    from ase.constraints import FixAtoms

    # set up the random number generator
    rng = np.random.RandomState(seed)

    # first create two random starting candidates
    slab = fcc111('Au', size=(4, 4, 2), vacuum=10.0, orthogonal=True)
    slab.set_constraint(FixAtoms(mask=slab.positions[:, 2] <= 10.))

    pos = slab.get_positions()
    cell = slab.get_cell()
    p0 = np.array([0., 0., max(pos[:, 2]) + 2.])
    v1 = cell[0, :] * 0.8
    v2 = cell[1, :] * 0.8
    v3 = cell[2, :]
    v3[2] = 3.

    blmin = closest_distances_generator(atom_numbers=[47, 79],
                                        ratio_of_covalent_radii=0.7)

    atom_numbers = 2 * [47] + 2 * [79]
    n_top = len(atom_numbers)
    sg = StartGenerator(slab=slab,
                        blocks=atom_numbers,
                        blmin=blmin,
                        box_to_place_in=[p0, [v1, v2, v3]],
                        rng=rng)

    c1 = sg.get_new_candidate()
    c1.info['confid'] = 1

    # first verify that the rattle mutation works
    rmut = RattleMutation(blmin, n_top, rattle_strength=0.8, rattle_prop=0.4,
                          rng=rng)

    c2, desc = rmut.get_new_individual([c1])

    assert np.all(c1.numbers == c2.numbers)

    top1 = c1[-n_top:]
    top2 = c2[-n_top:]
    slab2 = c2[0:(len(c1) - n_top)]

    assert len(slab) == len(slab2)
    assert np.all(slab.get_positions() == slab2.get_positions())

    dp = np.sum((top2.get_positions() - top1.get_positions())**2, axis=1)**0.5

    # check that all displacements are smaller than the rattle strength we
    # cannot check if 40 % of the structures have been rattled since it is
    # probabilistic and because the probability will be lower if two atoms
    # get too close
    for p in dp:
        assert p < 0.8 * 3**0.5

    # now we check the permutation mutation

    mmut = PermutationMutation(n_top, probability=0.5, rng=rng)

    c3, desc = mmut.get_new_individual([c1])
    assert np.all(c1.numbers == c3.numbers)

    top1 = c1[-n_top:]
    top2 = c3[-n_top:]
    slab2 = c3[0:(len(c1) - n_top)]

    assert len(slab) == len(slab2)
    assert np.all(slab.get_positions() == slab2.get_positions())
    dp = np.sum((top2.get_positions() - top1.get_positions())**2, axis=1)**0.5

    # verify that two positions have been changed
    assert len(dp[dp > 0]) == 2