示例#1
0
def test_idpp():
    initial = molecule('C2H6')
    final = initial.copy()
    final.positions[2:5] = initial.positions[[3, 4, 2]]

    images = [initial]
    for i in range(5):
        images.append(initial.copy())
    images.append(final)

    neb = NEB(images)
    d0 = images[3].get_distance(2, 3)
    neb.interpolate()
    d1 = images[3].get_distance(2, 3)
    idpp_interpolate(neb, fmax=0.005)
    d2 = images[3].get_distance(2, 3)
    print(d0, d1, d2)
    assert abs(d2 - 1.74) < 0.01
示例#2
0
def test_neb_tr():
    nimages = 3
    fmax = 0.01

    for remove_rotation_and_translation in [True, False]:
        # Define coordinates for initial and final states
        initial = Atoms('O4', [(1.94366484, 2.24788196, 2.32204726),
                               (3.05353823, 2.08091038, 2.30712548),
                               (2.63770601, 3.05694348, 2.67368242),
                               (2.50579418, 2.12540646, 3.28585811)])

        final = Atoms('O4', [(1.95501370, 2.22270649, 2.33191017),
                             (3.07439495, 2.13662682, 2.31948449),
                             (2.44730550, 1.26930465, 2.65964947),
                             (2.52788189, 2.18990240, 3.29728667)])

        final.set_cell((5, 5, 5))
        initial.set_cell((5, 5, 5))
        final.calc = LennardJones()
        initial.calc = LennardJones()

        images = [initial]

        # Set calculator
        for i in range(nimages):
            image = initial.copy()
            image.calc = LennardJones()
            images.append(image)

        images.append(final)

        # Define the NEB and make a linear interpolation
        # with removing translational
        # and rotational degrees of freedom
        neb = NEB(
            images,
            remove_rotation_and_translation=remove_rotation_and_translation)
        neb.interpolate()
        # Test used these old defaults which are not optimial, but work
        # in this particular system
        idpp_interpolate(neb, fmax=0.1, optimizer=BFGS)

        qn = FIRE(neb, dt=0.005, maxstep=0.05, dtmax=0.1)
        qn.run(steps=20)

        # Switch to CI-NEB, still removing the external degrees of freedom
        # Also spesify the linearly varying spring constants
        neb = NEB(
            images,
            climb=True,
            remove_rotation_and_translation=remove_rotation_and_translation)
        qn = FIRE(neb, dt=0.005, maxstep=0.05, dtmax=0.1)
        qn.run(fmax=fmax)

        images = neb.images

        nebtools = NEBTools(images)
        Ef_neb, dE_neb = nebtools.get_barrier(fit=False)
        nsteps_neb = qn.nsteps
        if remove_rotation_and_translation:
            Ef_neb_0 = Ef_neb
            nsteps_neb_0 = nsteps_neb

    assert abs(Ef_neb - Ef_neb_0) < 1e-2
    assert nsteps_neb_0 < nsteps_neb * 0.7
示例#3
0
文件: neb_tr.py 项目: shuchingou/ase
    for i in range(nimages):
        image = initial.copy()
        image.set_calculator(LennardJones())
        images.append(image)

    images.append(final)

    # Define the NEB and make a linear interpolation
    # with removing translational
    # and rotational degrees of freedom
    neb = NEB(images,
              remove_rotation_and_translation=remove_rotation_and_translation)
    neb.interpolate()
    # Test used these old defaults which are not optimial, but work
    # in this particular system
    idpp_interpolate(neb, fmax=0.1, optimizer=BFGS)

    qn = FIRE(neb, dt=0.005, maxmove=0.05, dtmax=0.1)
    qn.run(steps=20)

    # Switch to CI-NEB, still removing the external degrees of freedom
    # Also spesify the linearly varying spring constants
    neb = NEB(images,
              climb=True,
              remove_rotation_and_translation=remove_rotation_and_translation)
    qn = FIRE(neb, dt=0.005, maxmove=0.05, dtmax=0.1)
    qn.run(fmax=fmax)

    images = neb.images

    nebtools = NEBTools(images)
示例#4
0
from ase.build import molecule
from ase.neb import NEB, idpp_interpolate

initial = molecule('C2H6')
final = initial.copy()
final.positions[2:5] = initial.positions[[3, 4, 2]]

images = [initial]
for i in range(5):
    images.append(initial.copy())
images.append(final)

neb = NEB(images)
d0 = images[3].get_distance(2, 3)
neb.interpolate()
d1 = images[3].get_distance(2, 3)
idpp_interpolate(neb, fmax=0.005)
d2 = images[3].get_distance(2, 3)
print(d0, d1, d2)
assert abs(d2 - 1.74) < 0.01