def __init__(self, output_stride=16, num_classes=21): super(DeepLab, self).__init__() BatchNorm = nn.BatchNorm2d self.ResNet = ResNet18() self.aspp = build_aspp(output_stride, BatchNorm) self.decoder = build_decoder(num_classes, BatchNorm)
def __init__(self, backbone='resnet', output_stride=16, num_classes=4, sync_bn=False, freeze_bn=False): super(DeepLab, self).__init__() if backbone == 'drn': output_stride = 8 if sync_bn == True: BatchNorm = SynchronizedBatchNorm2d else: BatchNorm = nn.BatchNorm2d self.backbone = build_backbone(backbone, output_stride, BatchNorm) self.aspp = build_aspp(backbone, output_stride, BatchNorm) self.decoder = build_decoder(num_classes, backbone, BatchNorm) self.freeze_bn = freeze_bn
def __init__(self, backbone='resnet', output_stride=8, num_classes=10, sync_bn=False, freeze_bn=False): super(DeepLab, self).__init__() BatchNorm = nn.BatchNorm2d self.backbone = build_backbone(backbone, output_stride, BatchNorm) self.aspp = build_aspp(backbone, output_stride, BatchNorm) normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose([ transforms.Resize((512, 512)), transforms.ToTensor(), normalize, ]) self.transform = transform
def __init__(self, backbone='resnet', output_stride=16, num_classes=21, freeze_bn=False): super(DeepLab, self).__init__() if backbone == 'drn': output_stride = 8 BatchNorm = nn.BatchNorm2d self.backbone = resnet_deeplab.ResNet101(BatchNorm=BatchNorm, pretrained=False, output_stride=8) self.aspp = build_aspp(backbone, output_stride, BatchNorm) self.decoder = build_decoder(num_classes, backbone, BatchNorm) self.freeze_bn = freeze_bn