示例#1
0
def recog(args):
    '''Run recognition'''
    # seed setting
    torch.manual_seed(args.seed)

    # read training config
    idim, odim, train_args = get_model_conf(args.model, args.model_conf)

    # load trained model parameters
    logging.info('reading model parameters from ' + args.model)
    e2e = E2E(idim, odim, train_args)
    model = Loss(e2e, train_args.mtlalpha)
    torch_load(args.model, model)

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(train_args.char_list), rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        if not args.word_dict:
            logging.error(
                'word dictionary file is not specified for the word RNNLM.')
            sys.exit(1)

        rnnlm_args = get_model_conf(args.word_rnnlm, args.rnnlm_conf)
        word_dict = load_labeldict(args.word_dict)
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(word_dict), rnnlm_args.unit))
        torch_load(args.word_rnnlm, word_rnnlm)
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict,
                                           char_dict))
        else:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.LookAheadWordLM(word_rnnlm.predictor, word_dict,
                                              char_dict))

    # read json data
    with open(args.recog_json, 'rb') as f:
        js = json.load(f)['utts']

    # decode each utterance
    new_js = {}
    with torch.no_grad():
        for idx, name in enumerate(js.keys(), 1):
            logging.info('(%d/%d) decoding ' + name, idx, len(js.keys()))
            feat = kaldi_io_py.read_mat(js[name]['input'][0]['feat'])
            nbest_hyps = e2e.recognize(feat, args, train_args.char_list, rnnlm)
            new_js[name] = add_results_to_json(js[name], nbest_hyps,
                                               train_args.char_list)

    # TODO(watanabe) fix character coding problems when saving it
    with open(args.result_label, 'wb') as f:
        f.write(
            json.dumps({
                'utts': new_js
            }, indent=4, sort_keys=True).encode('utf_8'))
示例#2
0
def recog(args):
    '''Run recognition'''
    # seed setting
    torch.manual_seed(args.seed)

    # read training config
    with open(args.model_conf, "rb") as f:
        logging.info('reading a model config file from' + args.model_conf)
        idim, odim, train_args = pickle.load(f)

    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    # specify model architecture
    logging.info('reading model parameters from' + args.model)
    e2e = E2E(idim, odim, train_args)
    model = Loss(e2e, train_args.mtlalpha)

    def cpu_loader(storage, location):
        return storage

    def remove_dataparallel(state_dict):
        from collections import OrderedDict
        new_state_dict = OrderedDict()
        for k, v in state_dict.items():
            if k.startswith("module."):
                k = k[7:]
            new_state_dict[k] = v
        return new_state_dict

    model.load_state_dict(
        remove_dataparallel(torch.load(args.model, map_location=cpu_loader)))

    # read rnnlm
    if args.rnnlm:
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(train_args.char_list), 650))
        rnnlm.load_state_dict(torch.load(args.rnnlm, map_location=cpu_loader))
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        if not args.word_dict:
            logging.error(
                'word dictionary file is not specified for the word RNNLM.')
            sys.exit(1)

        word_dict = load_labeldict(args.word_dict)
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(word_dict), 650))
        word_rnnlm.load_state_dict(
            torch.load(args.word_rnnlm, map_location=cpu_loader))
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict,
                                           char_dict))
        else:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.LookAheadWordLM(word_rnnlm.predictor, word_dict,
                                              char_dict))

    # read json data
    with open(args.recog_json, 'rb') as f:
        recog_json = json.load(f)['utts']

    if not torch_is_old:
        torch.set_grad_enabled(False)

    new_json = {}
    for name in recog_json.keys():
        if args.input_tensor:
            feat = load_lua(recog_json[name]['input'][0]['feat']).numpy()
        else:
            feat = kaldi_io_py.read_mat(recog_json[name]['input'][0]['feat'])
        nbest_hyps = e2e.recognize(feat,
                                   args,
                                   train_args.char_list,
                                   rnnlm=rnnlm)
        # get 1best and remove sos
        y_hat = nbest_hyps[0]['yseq'][1:]
        y_true = map(int, recog_json[name]['output'][0]['tokenid'].split())

        # print out decoding result
        seq_hat = [train_args.char_list[int(idx)] for idx in y_hat]
        seq_true = [train_args.char_list[int(idx)] for idx in y_true]
        seq_hat_text = "".join(seq_hat).replace('<space>', ' ')
        seq_true_text = "".join(seq_true).replace('<space>', ' ')
        logging.info("groundtruth[%s]: " + seq_true_text, name)
        logging.info("prediction [%s]: " + seq_hat_text, name)

        # copy old json info
        new_json[name] = dict()
        new_json[name]['utt2spk'] = recog_json[name]['utt2spk']

        # added recognition results to json
        logging.debug("dump token id")
        out_dic = dict()
        for _key in recog_json[name]['output'][0]:
            out_dic[_key] = recog_json[name]['output'][0][_key]

        # TODO(karita) make consistent to chainer as idx[0] not idx
        out_dic['rec_tokenid'] = " ".join([str(idx) for idx in y_hat])
        logging.debug("dump token")
        out_dic['rec_token'] = " ".join(seq_hat)
        logging.debug("dump text")
        out_dic['rec_text'] = seq_hat_text

        new_json[name]['output'] = [out_dic]
        # TODO(nelson): Modify this part when saving more than 1 hyp is enabled
        # add n-best recognition results with scores
        if args.beam_size > 1 and len(nbest_hyps) > 1:
            for i, hyp in enumerate(nbest_hyps):
                y_hat = hyp['yseq'][1:]
                seq_hat = [train_args.char_list[int(idx)] for idx in y_hat]
                seq_hat_text = "".join(seq_hat).replace('<space>', ' ')
                new_json[name]['rec_tokenid' + '[' + '{:05d}'.format(i) +
                               ']'] = " ".join([str(idx) for idx in y_hat])
                new_json[name]['rec_token' + '[' + '{:05d}'.format(i) +
                               ']'] = " ".join(seq_hat)
                new_json[name]['rec_text' + '[' + '{:05d}'.format(i) +
                               ']'] = seq_hat_text
                new_json[name]['score' + '[' + '{:05d}'.format(i) +
                               ']'] = hyp['score']

    # TODO(watanabe) fix character coding problems when saving it
    with open(args.result_label, 'wb') as f:
        f.write(
            json.dumps({
                'utts': new_json
            }, indent=4, sort_keys=True).encode('utf_8'))
示例#3
0
def recog(args):
    '''Run recognition'''
    # display chainer version
    logging.info('chainer version = ' + chainer.__version__)

    # seed setting (chainer seed may not need it)
    os.environ["CHAINER_SEED"] = str(args.seed)
    logging.info('chainer seed = ' + os.environ['CHAINER_SEED'])

    # read training config
    idim, odim, train_args = get_model_conf(args.model, args.model_conf)

    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    # specify model architecture
    logging.info('reading model parameters from ' + args.model)
    e2e = E2E(idim, odim, train_args)
    model = Loss(e2e, train_args.mtlalpha)
    chainer_load(args.model, model)

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_chainer.ClassifierWithState(
            lm_chainer.RNNLM(len(train_args.char_list), rnnlm_args.unit))
        chainer_load(args.rnnlm, rnnlm)
    else:
        rnnlm = None

    if args.word_rnnlm:
        if not args.word_dict:
            logging.error(
                'word dictionary file is not specified for the word RNNLM.')
            sys.exit(1)

        rnnlm_args = get_model_conf(args.word_rnnlm, args.rnnlm_conf)
        word_dict = load_labeldict(args.word_dict)
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_chainer.ClassifierWithState(
            lm_chainer.RNNLM(len(word_dict), rnnlm_args.unit))
        chainer_load(args.word_rnnlm, word_rnnlm)

        if rnnlm is not None:
            rnnlm = lm_chainer.ClassifierWithState(
                extlm_chainer.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict,
                                           char_dict))
        else:
            rnnlm = lm_chainer.ClassifierWithState(
                extlm_chainer.LookAheadWordLM(word_rnnlm.predictor, word_dict,
                                              char_dict))

    # read json data
    with open(args.recog_json, 'rb') as f:
        js = json.load(f)['utts']

    # decode each utterance
    new_js = {}
    with chainer.no_backprop_mode():
        for idx, name in enumerate(js.keys(), 1):
            logging.info('(%d/%d) decoding ' + name, idx, len(js.keys()))
            feat = kaldi_io_py.read_mat(js[name]['input'][0]['feat'])
            nbest_hyps = e2e.recognize(feat, args, train_args.char_list, rnnlm)
            new_js[name] = add_results_to_json(js[name], nbest_hyps,
                                               train_args.char_list)

    # TODO(watanabe) fix character coding problems when saving it
    with open(args.result_label, 'wb') as f:
        f.write(
            json.dumps({
                'utts': new_js
            }, indent=4, sort_keys=True).encode('utf_8'))
示例#4
0
def recog(args):
    '''Run recognition'''
    # display chainer version
    logging.info('chainer version = ' + chainer.__version__)

    # seed setting (chainer seed may not need it)
    os.environ["CHAINER_SEED"] = str(args.seed)
    logging.info('chainer seed = ' + os.environ['CHAINER_SEED'])

    # read training config
    with open(args.model_conf, "rb") as f:
        logging.info('reading a model config file from' + args.model_conf)
        idim, odim, train_args = pickle.load(f)

    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    # specify model architecture
    logging.info('reading model parameters from' + args.model)
    e2e = E2E(idim, odim, train_args)
    model = Loss(e2e, train_args.mtlalpha)
    chainer.serializers.load_npz(args.model, model)

    # read rnnlm
    if args.rnnlm:
        rnnlm = lm_chainer.ClassifierWithState(
            lm_chainer.RNNLM(len(train_args.char_list), 650))
        chainer.serializers.load_npz(args.rnnlm, rnnlm)
    else:
        rnnlm = None

    if args.word_rnnlm:
        if not args.word_dict:
            logging.error(
                'word dictionary file is not specified for the word RNNLM.')
            sys.exit(1)

        word_dict = load_labeldict(args.word_dict)
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_chainer.ClassifierWithState(
            lm_chainer.RNNLM(len(word_dict), 650))
        chainer.serializers.load_npz(args.word_rnnlm, word_rnnlm)

        if rnnlm is not None:
            rnnlm = lm_chainer.ClassifierWithState(
                extlm_chainer.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict,
                                           char_dict))
        else:
            rnnlm = lm_chainer.ClassifierWithState(
                extlm_chainer.LookAheadWordLM(word_rnnlm.predictor, word_dict,
                                              char_dict))

    # read json data
    with open(args.recog_json, 'rb') as f:
        recog_json = json.load(f)['utts']

    new_json = {}
    for name in recog_json.keys():
        feat = kaldi_io_py.read_mat(recog_json[name]['input'][0]['feat'])
        logging.info('decoding ' + name)
        nbest_hyps = e2e.recognize(feat, args, train_args.char_list, rnnlm)
        # get 1best and remove sos
        y_hat = nbest_hyps[0]['yseq'][1:]
        y_true = map(int, recog_json[name]['output'][0]['tokenid'].split())

        # print out decoding result
        seq_hat = [train_args.char_list[int(idx)] for idx in y_hat]
        seq_true = [train_args.char_list[int(idx)] for idx in y_true]
        seq_hat_text = "".join(seq_hat).replace('<space>', ' ')
        seq_true_text = "".join(seq_true).replace('<space>', ' ')
        logging.info("groundtruth[%s]: " + seq_true_text, name)
        logging.info("prediction [%s]: " + seq_hat_text, name)

        # copy old json info
        new_json[name] = dict()
        new_json[name]['utt2spk'] = recog_json[name]['utt2spk']

        # add 1-best recognition results to json
        logging.debug("dump token id")
        out_dic = dict()
        for _key in recog_json[name]['output'][0]:
            out_dic[_key] = recog_json[name]['output'][0][_key]

        # TODO(karita) make consistent to chainer as idx[0] not idx
        out_dic['rec_tokenid'] = " ".join([str(idx[0]) for idx in y_hat])
        logging.debug("dump token")
        out_dic['rec_token'] = " ".join(seq_hat)
        logging.debug("dump text")
        out_dic['rec_text'] = seq_hat_text

        new_json[name]['output'] = [out_dic]
        # TODO(nelson): Modify this part when saving more than 1 hyp is enabled
        # add n-best recognition results with scores
        if args.beam_size > 1 and len(nbest_hyps) > 1:
            for i, hyp in enumerate(nbest_hyps):
                y_hat = hyp['yseq'][1:]
                seq_hat = [train_args.char_list[int(idx)] for idx in y_hat]
                seq_hat_text = "".join(seq_hat).replace('<space>', ' ')
                new_json[name]['rec_tokenid' + '[' + '{:05d}'.format(i) + ']'] \
                    = " ".join([str(idx[0]) for idx in y_hat])
                new_json[name]['rec_token' + '[' + '{:05d}'.format(i) +
                               ']'] = " ".join(seq_hat)
                new_json[name]['rec_text' + '[' + '{:05d}'.format(i) +
                               ']'] = seq_hat_text
                new_json[name]['score' + '[' + '{:05d}'.format(i) +
                               ']'] = hyp['score']

    # TODO(watanabe) fix character coding problems when saving it
    with open(args.result_label, 'wb') as f:
        f.write(
            json.dumps({
                'utts': new_json
            }, indent=4, sort_keys=True).encode('utf_8'))
示例#5
0
def recog(args):
    '''Run recognition'''
    # seed setting
    torch.manual_seed(args.seed)

    # read training config
    idim, odim, train_args = get_model_conf(args.model, args.model_conf)

    # load trained model parameters
    logging.info('reading model parameters from ' + args.model)
    e2e = E2E(idim, odim, train_args)
    model = Loss(e2e, train_args.mtlalpha)
    torch_load(args.model, model)

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(train_args.char_list), rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        if not args.word_dict:
            logging.error('word dictionary file is not specified for the word RNNLM.')
            sys.exit(1)

        rnnlm_args = get_model_conf(args.word_rnnlm, args.rnnlm_conf)
        word_dict = load_labeldict(args.word_dict)
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(lm_pytorch.RNNLM(len(word_dict), rnnlm_args.unit))
        torch_load(args.word_rnnlm, word_rnnlm)
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict, char_dict))
        else:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.LookAheadWordLM(word_rnnlm.predictor,
                                              word_dict, char_dict))

    # read json data
    with open(args.recog_json, 'rb') as f:
        recog_json = json.load(f)['utts']

    new_json = {}
    with torch.no_grad():
        for name in recog_json.keys():
            feat = kaldi_io_py.read_mat(recog_json[name]['input'][0]['feat'])
            nbest_hyps = e2e.recognize(feat, args, train_args.char_list, rnnlm=rnnlm)
            # get 1best and remove sos
            y_hat = nbest_hyps[0]['yseq'][1:]
            y_true = map(int, recog_json[name]['output'][0]['tokenid'].split())

            # print out decoding result
            seq_hat = [train_args.char_list[int(idx)] for idx in y_hat]
            seq_true = [train_args.char_list[int(idx)] for idx in y_true]
            seq_hat_text = "".join(seq_hat).replace('<space>', ' ')
            seq_true_text = "".join(seq_true).replace('<space>', ' ')
            logging.info("groundtruth[%s]: " + seq_true_text, name)
            logging.info("prediction [%s]: " + seq_hat_text, name)

            # copy old json info
            new_json[name] = dict()
            new_json[name]['utt2spk'] = recog_json[name]['utt2spk']

            # added recognition results to json
            logging.debug("dump token id")
            out_dic = dict()
            for _key in recog_json[name]['output'][0]:
                out_dic[_key] = recog_json[name]['output'][0][_key]

            # TODO(karita) make consistent to chainer as idx[0] not idx
            out_dic['rec_tokenid'] = " ".join([str(idx) for idx in y_hat])
            logging.debug("dump token")
            out_dic['rec_token'] = " ".join(seq_hat)
            logging.debug("dump text")
            out_dic['rec_text'] = seq_hat_text

            new_json[name]['output'] = [out_dic]
            # TODO(nelson): Modify this part when saving more than 1 hyp is enabled
            # add n-best recognition results with scores
            if args.beam_size > 1 and len(nbest_hyps) > 1:
                for i, hyp in enumerate(nbest_hyps):
                    y_hat = hyp['yseq'][1:]
                    seq_hat = [train_args.char_list[int(idx)] for idx in y_hat]
                    seq_hat_text = "".join(seq_hat).replace('<space>', ' ')
                    new_json[name]['rec_tokenid' + '[' + '{:05d}'.format(i) + ']'] = \
                        " ".join([str(idx) for idx in y_hat])
                    new_json[name]['rec_token' + '[' + '{:05d}'.format(i) + ']'] = " ".join(seq_hat)
                    new_json[name]['rec_text' + '[' + '{:05d}'.format(i) + ']'] = seq_hat_text
                    new_json[name]['score' + '[' + '{:05d}'.format(i) + ']'] = hyp['score']

    # TODO(watanabe) fix character coding problems when saving it
    with open(args.result_label, 'wb') as f:
        f.write(json.dumps({'utts': new_json}, indent=4, sort_keys=True).encode('utf_8'))