示例#1
0
 def test_eval(self):
     #
     # 1D 
     # 
     
     # Define Kernel function
     def k_fn(x,y,c = 2):
         return x*y + c
     
     k = Explicit(f=lambda x,y,c: x*y+c, parameters={'c':1}, 
                  n_variables=2, dim=1)
     
     # Construct kernel, specifying parameter c
     kernel = Kernel(k)
     
     # Evaluation points
     x = np.ones((11,1))
     y = np.linspace(0,1,11)[:,None]
     
     # Check accuracy
     self.assertTrue(np.allclose(kernel.eval((x,y)), x*y+1))
     
     # Define kernel with default parameters
     k.set_parameters({'c':2})
     
     kernel = Kernel(k)
     
     # Check accuracy
     self.assertTrue(np.allclose(kernel.eval((x,y)), x*y+2))
示例#2
0
 def test_n_samples(self):
     # 
     # 1D
     #
     
     # Define mesh
     mesh = Mesh1D(resolution=(10,))
     
     # Define function  
     f = Explicit([lambda x: x, lambda x: -2+2*x**2], dim=1)
     n_samples = f.n_samples()
     
     k = Kernel(f)
     
     n_points = 101
     x0, x1 = mesh.bounding_box()
     x = np.linspace(x0,x1,n_points)
     
     self.assertEqual(k.eval(x).shape, (n_points, n_samples))
     self.assertTrue(np.allclose(k.eval(x)[:,0],x))
     self.assertTrue(np.allclose(k.eval(x)[:,1], -2+2*x**2))
示例#3
0
    def test_constructor(self):
        # =====================================================================
        # Test 1D 
        # ===================================================================== 
        
        #
        # Kernel consists of a single explicit Function: 
        # 
        f1 = lambda x: x+2
        f = Explicit(f1, dim=1)
        k = Kernel(f)
        x = np.linspace(0,1,100)
        n_points = len(x)
        
        # Check that it evaluates correctly.
        self.assertTrue(np.allclose(f1(x), k.eval(x).ravel()))
        
        # Check shape of kernel
        self.assertEqual(k.eval(x).shape, (n_points,1))
        
        #
        # Kernel consists of a combination of two explicit functions
        # 
        f1 = Explicit(lambda x: x+2, dim=1)
        f2 = Explicit(lambda x: x**2 + 1, dim=1)
        F = lambda f1, f2: f1**2 + f2
        f_t = lambda x: (x+2)**2 + x**2 + 1
        k = Kernel([f1,f2], F=F)
        
        # Check evaluation
        self.assertTrue(np.allclose(f_t(x), k.eval(x).ravel()))
        
        # Check shape 
        self.assertEqual(k.eval(x).shape, (n_points,1))
        

        #
        # Same thing as above, but with nodal functions
        # 
        mesh = Mesh1D(resolution=(1,))
        Q1 = QuadFE(1,'Q1')
        Q2 = QuadFE(1,'Q2')
        
        dQ1 = DofHandler(mesh,Q1)
        dQ2 = DofHandler(mesh,Q2)
        
        # Distribute dofs
        [dQ.distribute_dofs() for dQ in [dQ1,dQ2]]
        
        # Basis functions
        phi1 = Basis(dQ1,'u')
        phi2 = Basis(dQ2,'u')
        
        f1 = Nodal(lambda x: x+2, basis=phi1)
        f2 = Nodal(lambda x: x**2 + 1, basis=phi2)
        k = Kernel([f1,f2], F=F)
        
        # Check evaluation
        self.assertTrue(np.allclose(f_t(x), k.eval(x).ravel()))
        
        #
        # Replace f2 above with its derivative
        # 
        k = Kernel([f1,f2], derivatives=['f', 'fx'], F=F)
        f_t = lambda x: (x+2)**2 + 2*x
                
        # Check derivative evaluation F = F(f1, df2_dx)
        self.assertTrue(np.allclose(f_t(x), k.eval(x).ravel()))
        
        
        # 
        # Sampling 
        #
        one = Constant(1)
        f1 = Explicit(lambda x: x**2 + 1, dim=1)
        
        # Sampled function
        a = np.linspace(0,1,11)
        n_samples = len(a)
        
        # Define Dofhandler
        dh = DofHandler(mesh, Q2)
        dh.distribute_dofs()
        dh.set_dof_vertices()
        xv = dh.get_dof_vertices()
        n_dofs = dh.n_dofs()
        
        phi = Basis(dh, 'u')
        
        # Evaluate parameterized function at mesh dof vertices
        f2_m  = np.empty((n_dofs, n_samples))
        for i in range(n_samples):
            f2_m[:,i] = xv.ravel() + a[i]*xv.ravel()**2
        f2 = Nodal(data=f2_m, basis=phi)
        
        # Define kernel
        F = lambda f1, f2, one: f1 + f2 + one
        k = Kernel([f1,f2,one], F=F)
        
        # Evaluate on a fine mesh
        x = np.linspace(0,1,100)
        n_points = len(x)
        self.assertEqual(k.eval(x).shape, (n_points, n_samples))    
        for i in range(n_samples):
            # Check evaluation            
            self.assertTrue(np.allclose(k.eval(x)[:,i], f1.eval(x)[:,i] + x + a[i]*x**2+ 1))
            
        
        #
        # Sample multiple constant functions
        # 
        f1 = Constant(data=a)
        f2 = Explicit(lambda x: 1 + x**2, dim=1)
        f3 = Nodal(data=f2_m[:,-1], basis=phi)
        
        F = lambda f1, f2, f3: f1 + f2 + f3
        k = Kernel([f1,f2,f3], F=F)
        
        x = np.linspace(0,1,100)
        for i in range(n_samples):
            self.assertTrue(np.allclose(k.eval(x)[:,i], \
                                        a[i] + f2.eval(x)[:,i] + f3.eval(x)[:,i]))
        
        #
        # Submeshes
        # 
        mesh = Mesh1D(resolution=(1,))
        mesh_labels = Tree(regular=False)
        
        mesh = Mesh1D(resolution=(1,))
        Q1 = QuadFE(1,'Q1')
        Q2 = QuadFE(1,'Q2')
        
        dQ1 = DofHandler(mesh,Q1)
        dQ2 = DofHandler(mesh,Q2)
        
        # Distribute dofs
        [dQ.distribute_dofs() for dQ in [dQ1,dQ2]]
        
        # Basis
        p1 = Basis(dQ1)
        p2 = Basis(dQ2) 
        
        
        f1 = Nodal(lambda x: x, basis=p1)
        f2 = Nodal(lambda x: -2+2*x**2, basis=p2)
        one = Constant(np.array([1,2]))
    
        F = lambda f1, f2, one: 2*f1**2 + f2 + one
        
        I = mesh.cells.get_child(0)
        
        kernel = Kernel([f1,f2, one], F=F)
        
        rule1D = GaussRule(5,shape='interval')
        x = I.reference_map(rule1D.nodes())