def test_random_adjust_brightness(self):
   preprocessor_text_proto = """
   random_adjust_brightness {
     max_delta: 0.15
   }
   """
   preprocessor_proto = preprocessor_pb2.PreprocessingStep()
   text_format.Merge(preprocessor_text_proto, preprocessor_proto)
   function, args = preprocessor_builder.build(preprocessor_proto)
   self.assertEqual(function, preprocessor.random_adjust_brightness)
   self.assert_dictionary_close(args, {
       'max_delta': 0.15
   })
 def test_random_rgb_to_gray(self):
   preprocessor_text_proto = """
   random_rgb_to_gray {
     probability: 0.15
   }
   """
   preprocessor_proto = preprocessor_pb2.PreprocessingStep()
   text_format.Merge(preprocessor_text_proto, preprocessor_proto)
   function, args = preprocessor_builder.build(preprocessor_proto)
   self.assertEqual(function, preprocessor.random_rgb_to_gray)
   self.assert_dictionary_close(args, {
       'probability': 0.15
   })
 def test_build_resize_image_random_method(self):
   preprocessor_text_proto = """
   resize_image_random_method {
     target_height: 384
     target_width: 384
   }
   """
   preprocessor_proto = preprocessor_pb2.PreprocessingStep()
   text_format.Merge(preprocessor_text_proto, preprocessor_proto)
   function, args = preprocessor_builder.build(preprocessor_proto)
   self.assertEqual(function, preprocessor.resize_image_random_method)
   self.assert_dictionary_close(args, {
       'target_size': [384, 384]
   })
 def test_random_pixel_value_scale(self):
   preprocessor_text_proto = """
   random_pixel_value_scale {
     minval: 0.85
     maxval: 1.25
   }
   """
   preprocessor_proto = preprocessor_pb2.PreprocessingStep()
   text_format.Merge(preprocessor_text_proto, preprocessor_proto)
   function, args = preprocessor_builder.build(preprocessor_proto)
   self.assertEqual(function, preprocessor.random_pixel_value_scale)
   self.assert_dictionary_close(args, {
       'minval': 0.85,
       'maxval': 1.25
   })
 def test_random_adjust_contrast(self):
   preprocessor_text_proto = """
   random_adjust_contrast {
     min_delta: 0.7
     max_delta: 1.3
   }
   """
   preprocessor_proto = preprocessor_pb2.PreprocessingStep()
   text_format.Merge(preprocessor_text_proto, preprocessor_proto)
   function, args = preprocessor_builder.build(preprocessor_proto)
   self.assertEqual(function, preprocessor.random_adjust_contrast)
   self.assert_dictionary_close(args, {
       'min_delta': 0.7,
       'max_delta': 1.3
   })
 def test_build_resize_image(self):
   preprocessor_text_proto = """
   resize_image {
     target_height: 384
     target_width: 384
     method: BICUBIC
   }
   """
   preprocessor_proto = preprocessor_pb2.PreprocessingStep()
   text_format.Merge(preprocessor_text_proto, preprocessor_proto)
   function, args = preprocessor_builder.build(preprocessor_proto)
   self.assertEqual(function, preprocessor.resize_image)
   self.assertEqual(args, {
       'target_size': [384, 384],
       'method': tf.image.ResizeMethod.BICUBIC
   })
 def test_normalize_image(self):
   preprocessor_text_proto = """
   normalize_image {
     original_minval: 0.0
     original_maxval: 255.0
     target_minval: 0.0
     target_maxval: 1.0
   }
   """
   preprocessor_proto = preprocessor_pb2.PreprocessingStep()
   text_format.Merge(preprocessor_text_proto, preprocessor_proto)
   function, args = preprocessor_builder.build(preprocessor_proto)
   self.assertEqual(function, preprocessor.normalize_image)
   self.assert_dictionary_close(args, {
       'original_minval': 0.0,
       'original_maxval': 255.0,
       'target_minval': 0.0,
       'target_maxval': 1.0
   })
  def test_string_filtering_2(self):
    preprocessor_text_proto = """
    string_filtering {
      lower_case: false
      include_charset {
        built_in_set: ALLCASES
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.string_filtering)
    self.assert_dictionary_close(args, {
        'lower_case': False,
        'include_charset': "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
    })

    test_input_strings = [t.encode('utf-8') for t in ['abc', 'abcde', '!=ABC DE~']]
    expected_output_string = [t.encode('utf-8') for t in ['abc', 'abcde', 'ABCDE']]
    test_processed_strings = [function(t, **args) for t in test_input_strings]
    with self.test_session() as sess:
      outputs = sess.run(test_processed_strings)
      self.assertAllEqual(outputs, expected_output_string)
  def test_string_filtering(self):
    preprocessor_text_proto = """
    string_filtering {
      lower_case: true
      include_charset {
        text_string: "abc"
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.string_filtering)
    self.assert_dictionary_close(args, {
        'lower_case': True,
        'include_charset': "abc"
    })

    test_input_strings = [t.encode('utf-8') for t in ['abc', 'abcde', 'ABCDE']]
    expected_output_string = [t.encode('utf-8') for t in ['abc', 'abc', 'abc']]
    test_processed_strings = [function(t, **args) for t in test_input_strings]
    with self.test_session() as sess:
      outputs = sess.run(test_processed_strings)
      self.assertAllEqual(outputs, expected_output_string)
示例#10
0
def train(create_tensor_dict_fn_list, create_model_fn, train_config, master,
          task, num_clones, worker_replicas, clone_on_cpu, ps_tasks,
          worker_job_name, is_chief, train_dir):
    """Training function for models.
  Args:
    create_tensor_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel and generates
                     losses.
    train_config: a train_pb2.TrainConfig protobuf.
    master: BNS name of the TensorFlow master to use.
    task: The task id of this training instance.
    num_clones: The number of clones to run per machine.
    worker_replicas: The number of work replicas to train with.
    clone_on_cpu: True if clones should be forced to run on CPU.
    ps_tasks: Number of parameter server tasks.
    worker_job_name: Name of the worker job.
    is_chief: Whether this replica is the chief replica.
    train_dir: Directory to write checkpoints and training summaries to.
  """
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]

    with tf.Graph().as_default():
        # Build a configuration specifying multi-GPU and multi-replicas.
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=num_clones,
            clone_on_cpu=clone_on_cpu,
            replica_id=task,
            num_replicas=worker_replicas,
            num_ps_tasks=ps_tasks,
            worker_job_name=worker_job_name)

        # Place the global step on the device storing the variables.
        with tf.device(deploy_config.variables_device()):
            global_step = tf.train.create_global_step()

        with tf.device(deploy_config.inputs_device()), \
             tf.name_scope('Input'):
            input_queue_list = []
            for i, create_tensor_dict_fn in enumerate(
                    create_tensor_dict_fn_list):
                input_queue_list.append(
                    _create_input_queue(
                        train_config.batch_size[i] // num_clones,
                        create_tensor_dict_fn,
                        train_config.batch_queue_capacity,
                        train_config.num_batch_queue_threads,
                        train_config.prefetch_queue_capacity,
                        data_augmentation_options))

        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
        global_summaries = set([])

        model_fn = functools.partial(_create_losses,
                                     create_model_fn=create_model_fn)
        clones = model_deploy.create_clones(deploy_config, model_fn,
                                            [input_queue_list])
        first_clone_scope = clones[0].scope

        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by model_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        with tf.device(deploy_config.optimizer_device()), \
             tf.name_scope('Optimizer'):
            training_optimizer = optimizer_builder.build(
                train_config.optimizer, global_summaries)

        sync_optimizer = None
        if train_config.sync_replicas:
            training_optimizer = tf.train.SyncReplicasOptimizer(
                training_optimizer,
                replicas_to_aggregate=train_config.replicas_to_aggregate,
                total_num_replicas=train_config.worker_replicas)
            sync_optimizer = training_optimizer

        # Create ops required to initialize the model from a given checkpoint.
        init_fn = None
        if train_config.fine_tune_checkpoint:
            var_map = detection_model.restore_map(
                from_detection_checkpoint=train_config.
                from_detection_checkpoint)
            available_var_map = variables_helper.get_variables_available_in_checkpoint(
                var_map, train_config.fine_tune_checkpoint)
            init_saver = tf.train.Saver(available_var_map)

            def initializer_fn(sess):
                init_saver.restore(sess, train_config.fine_tune_checkpoint)

            init_fn = initializer_fn

        with tf.device(deploy_config.optimizer_device()), \
             tf.variable_scope('OptimizeClones'):
            total_loss, grads_and_vars = model_deploy.optimize_clones(
                clones, training_optimizer, regularization_losses=None)
            total_loss = tf.check_numerics(total_loss,
                                           'LossTensor is inf or nan.')

            # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
            if train_config.bias_grad_multiplier:
                biases_regex_list = [r'.*bias(?:es)?', r'.*beta']
                grads_and_vars = variables_helper.multiply_gradients_matching_regex(
                    grads_and_vars,
                    biases_regex_list,
                    multiplier=train_config.bias_grad_multiplier)

            # Optionally freeze some layers by setting their gradients to be zero.
            if train_config.freeze_variables:
                grads_and_vars = variables_helper.freeze_gradients_matching_regex(
                    grads_and_vars, train_config.freeze_variables)

            # Optionally clip gradients
            if train_config.gradient_clipping_by_norm > 0:
                with tf.name_scope('clip_grads'):
                    grads_and_vars = tf.contrib.training.clip_gradient_norms(
                        grads_and_vars, train_config.gradient_clipping_by_norm)

            # Create gradient updates.
            grad_updates = training_optimizer.apply_gradients(
                grads_and_vars, global_step=global_step)
            update_ops.append(grad_updates)

            update_op = tf.group(*update_ops)
            with tf.control_dependencies([update_op]):
                train_tensor = tf.identity(total_loss, name='train_op')

        # Add summaries.
        for (grad, var) in grads_and_vars:
            var_name = var.op.name
            grad_name = 'grad/' + var_name
            global_summaries.add(tf.summary.histogram(grad_name, grad))
            global_summaries.add(tf.summary.histogram(var_name, var))
        # for model_var in tf.contrib.framework.get_model_variables():
        #   global_summaries.add(tf.summary.histogram(model_var.op.name, model_var))
        for loss_tensor in tf.losses.get_losses():
            global_summaries.add(
                tf.summary.scalar(loss_tensor.op.name, loss_tensor))
        global_summaries.add(
            tf.summary.scalar('TotalLoss', tf.losses.get_total_loss()))

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
        summaries |= global_summaries

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        # Soft placement allows placing on CPU ops without GPU implementation.
        session_config = tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=False)

        # Save checkpoints regularly.
        keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
        saver = tf.train.Saver(
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)

        scaffold = tf.train.Scaffold(init_fn=init_fn,
                                     summary_op=summary_op,
                                     saver=saver)
        stop_hook = tf.train.StopAtStepHook(
            num_steps=(train_config.num_steps
                       if train_config.num_steps else None), )
        profile_hook = profile_session_run_hooks.ProfileAtStepHook(
            at_step=200, checkpoint_dir=train_dir)
        tf.contrib.training.train(
            train_tensor,
            train_dir,
            master=master,
            is_chief=is_chief,
            scaffold=scaffold,
            hooks=[stop_hook, profile_hook],
            chief_only_hooks=None,
            save_checkpoint_secs=train_config.save_checkpoint_secs,
            save_summaries_steps=train_config.save_summaries_steps,
            config=session_config)
示例#11
0
def evaluate(create_input_dict_fn, create_model_fn, eval_config,
             checkpoint_dir, eval_dir,
             repeat_evaluation=True):
  model = create_model_fn()
  data_preprocessing_steps = [
      preprocessor_builder.build(step)
      for step in eval_config.data_preprocessing_steps]

  tensor_dict = _extract_prediction_tensors(
      model=model,
      create_input_dict_fn=create_input_dict_fn,
      data_preprocessing_steps=data_preprocessing_steps,
      ignore_groundtruth=eval_config.ignore_groundtruth,
      evaluate_with_lexicon=eval_config.eval_with_lexicon)

  summary_writer = tf.summary.FileWriter(eval_dir)

  def _process_batch(tensor_dict, sess, batch_index, counters, update_op):
    if batch_index >= eval_config.num_visualizations:
      if 'original_image' in tensor_dict:
        tensor_dict = {k: v for (k, v) in tensor_dict.items()
                       if k != 'original_image'}
    try:
      (result_dict, _) = sess.run([tensor_dict, update_op])
      counters['success'] += 1
    except tf.errors.InvalidArgumentError:
      logging.info('Skipping image')
      counters['skipped'] += 1
      return {}
    global_step = tf.train.global_step(sess, tf.train.get_global_step())
    if batch_index < eval_config.num_visualizations:
      eval_util.visualize_recognition_results(
          result_dict,
          'Recognition_{}'.format(batch_index),
          global_step,
          summary_dir=eval_dir,
          export_dir=os.path.join(eval_dir, 'vis'),
          summary_writer=summary_writer,
          only_visualize_incorrect=eval_config.only_visualize_incorrect)

    return result_dict

  def _process_aggregated_results(result_lists):
    eval_metric_fn_key = eval_config.metrics_set
    if eval_metric_fn_key not in EVAL_METRICS_FN_DICT:
      raise ValueError('Metric not found: {}'.format(eval_metric_fn_key))
    return EVAL_METRICS_FN_DICT[eval_metric_fn_key](result_lists)

  variables_to_restore = tf.global_variables()
  global_step = tf.train.get_or_create_global_step()
  variables_to_restore.append(global_step)
  if eval_config.use_moving_averages:
    variable_averages = tf.train.ExponentialMovingAverage(0.0)
    variables_to_restore = variable_averages.variables_to_restore()
  saver = tf.train.Saver(variables_to_restore)
  def _restore_latest_checkpoint(sess):
    latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
    saver.restore(sess, latest_checkpoint)

  eval_util.repeated_checkpoint_run(
      tensor_dict=tensor_dict,
      update_op=tf.no_op(),
      summary_dir=eval_dir,
      aggregated_result_processor=_process_aggregated_results,
      batch_processor=_process_batch,
      checkpoint_dirs=[checkpoint_dir],
      variables_to_restore=None,
      restore_fn=_restore_latest_checkpoint,
      num_batches=eval_config.num_examples,
      eval_interval_secs=eval_config.eval_interval_secs,
      max_number_of_evaluations=(
          1 if eval_config.ignore_groundtruth else
          eval_config.max_evals if eval_config.max_evals else
          None if repeat_evaluation else 1),
      master=eval_config.eval_master,
      save_graph=eval_config.save_graph,
      save_graph_dir=(eval_dir if eval_config.save_graph else ''))

  summary_writer.close()