示例#1
0
def test_stft_def(fb_config):
    """ Check consistency between two calls."""
    fb = STFTFB(**fb_config)
    enc = Encoder(fb)
    dec = Decoder(fb)
    enc2, dec2 = make_enc_dec('stft', **fb_config)
    testing.assert_allclose(enc.filterbank.filters, enc2.filterbank.filters)
    testing.assert_allclose(dec.filterbank.filters, dec2.filterbank.filters)
示例#2
0
def test_pinv_of(fb_class):
    fb = fb_class(n_filters=500, kernel_size=16, stride=8)
    encoder = Encoder(fb)
    # Pseudo inverse can be taken from an Encoder/Decoder class or Filterbank.
    decoder_e = Decoder.pinv_of(encoder)
    decoder_f = Decoder.pinv_of(fb)
    assert_allclose(decoder_e.filters, decoder_f.filters)

    # Check filter computing
    inp = torch.randn(1, 1, 32000)
    _ = decoder_e(encoder(inp))

    decoder = Decoder(fb)
    # Pseudo inverse can be taken from an Encoder/Decoder class or Filterbank.
    encoder_e = Encoder.pinv_of(decoder)
    encoder_f = Encoder.pinv_of(fb)
    assert_allclose(encoder_e.filters, encoder_f.filters)
示例#3
0
def test_fb_def_and_forward(fb_class, fb_config):
    """ Test filterbank defintion and encoder/decoder forward."""
    # Definition
    enc = Encoder(fb_class(**fb_config))
    dec = Decoder(fb_class(**fb_config))
    # Forward
    inp = torch.randn(1, 1, 32000)
    tf_out = enc(inp)
    out = dec(tf_out)
    # 4d forward + unit test
    tf_out_4d = tf_out.repeat(1, 2, 1, 1)
    out_4d = dec(tf_out_4d)
    assert_allclose(out, out_4d[:, 0])
    # Get config tests
    dec_config = dec.get_config()
    enc_config = enc.get_config()
    # N feats out test
    assert tf_out.shape[1] == enc.filterbank.n_feats_out
示例#4
0
def test_griffinlim(fb_config, feed_istft, feed_angle):
    stft = Encoder(STFTFB(**fb_config))
    istft = None if not feed_istft else Decoder(STFTFB(**fb_config))
    wav = torch.randn(2, 1, 8000)
    spec = stft(wav)
    tf_mask = torch.sigmoid(torch.randn_like(spec))
    masked_spec = spec * tf_mask
    mag = transforms.take_mag(masked_spec, -2)
    angles = None if not feed_angle else transforms.angle(masked_spec, -2)
    griffin_lim(mag, stft, angles=angles, istft_dec=istft, n_iter=3)
示例#5
0
def test_fb_def_and_forward_all_dims(fb_class, fb_config):
    """ Test encoder/decoder on other shapes than 3D"""
    # Definition
    enc = Encoder(fb_class(**fb_config))
    dec = Decoder(fb_class(**fb_config))

    # 3D Forward with one channel
    inp = torch.randn(3, 1, 32000)
    tf_out = enc(inp)
    assert tf_out.shape[:2] == (3, enc.filterbank.n_feats_out)
    out = dec(tf_out)
    assert out.shape[:-1] == inp.shape[:-1]  # Time axis can differ
示例#6
0
def test_fb_forward_multichannel(fb_class, fb_config, ndim):
    """ Test encoder/decoder in multichannel setting"""
    # Definition
    enc = Encoder(fb_class(**fb_config))
    dec = Decoder(fb_class(**fb_config))
    # 3D Forward with several channels
    tensor_shape = tuple([random.randint(2, 4)
                          for _ in range(ndim)]) + (4000, )
    inp = torch.randn(tensor_shape)
    tf_out = enc(inp)
    assert tf_out.shape[:ndim + 1] == (tensor_shape[:-1] +
                                       (enc.filterbank.n_feats_out, ))
    out = dec(tf_out)
    assert out.shape[:-1] == inp.shape[:-1]  # Time axis can differ
示例#7
0
def test_perfect_resyn_window(fb_config, analysis_window_name):
    """ Unit test perfect reconstruction """
    kernel_size = fb_config["kernel_size"]
    window = get_window(analysis_window_name, kernel_size)

    enc = Encoder(STFTFB(**fb_config, window=window))
    # Compute window for perfect resynthesis
    synthesis_window = perfect_synthesis_window(enc.filterbank.window,
                                                enc.stride)
    dec = Decoder(STFTFB(**fb_config, window=synthesis_window))
    inp_wav = torch.ones(1, 1, 32000)
    out_wav = dec(enc(inp_wav))[:, :, kernel_size:-kernel_size]
    inp_test = inp_wav[:, :, kernel_size:-kernel_size]
    testing.assert_allclose(inp_test, out_wav)
示例#8
0
def test_misi(fb_config, feed_istft, feed_angle):
    stft = Encoder(STFTFB(**fb_config))
    istft = None if not feed_istft else Decoder(STFTFB(**fb_config))
    n_src = 3
    # Create mixture
    wav = torch.randn(2, 1, 8000)
    spec = stft(wav).unsqueeze(1)
    # Create n_src masks on mixture spec and apply them
    shape = list(spec.shape)
    shape[1] *= n_src
    tf_mask = torch.sigmoid(torch.randn(*shape))
    masked_specs = spec * tf_mask
    # Separate mag and angle.
    mag = transforms.take_mag(masked_specs, -2)
    angles = None if not feed_angle else transforms.angle(masked_specs, -2)
    est_wavs = misi(wav, mag, stft, angles=angles, istft_dec=istft, n_iter=2)
    # We actually don't know the last dim because ISTFT(STFT()) cuts the end
    assert est_wavs.shape[:-1] == (2, n_src)
示例#9
0
    def __init__(self, fb_conf, mask_conf):
        super().__init__()
        self.n_src = mask_conf['n_src']
        self.n_filters = fb_conf['n_filters']
        # Create TasNet encoders and decoders (could use nn.Conv1D as well)
        self.encoder_sig = Encoder(FreeFB(**fb_conf))
        self.encoder_relu = Encoder(FreeFB(**fb_conf))
        self.decoder = Decoder(FreeFB(**fb_conf))
        self.bn_layer = GlobLN(fb_conf['n_filters'])

        # Create TasNet masker
        self.masker = nn.Sequential(
            SingleRNN('lstm',
                      fb_conf['n_filters'],
                      hidden_size=mask_conf['n_units'],
                      n_layers=mask_conf['n_layers'],
                      bidirectional=True,
                      dropout=mask_conf['dropout']),
            nn.Linear(2 * mask_conf['n_units'], self.n_src * self.n_filters),
            nn.Sigmoid())
示例#10
0
def test_fb_def_and_forward_lowdim(fb_class, fb_config):
    """ Test filterbank definition and encoder/decoder forward."""
    # Definition
    enc = Encoder(fb_class(**fb_config))
    dec = Decoder(fb_class(**fb_config))
    # Forward
    inp = torch.randn(1, 1, 16000)
    tf_out = enc(inp)
    # Assert for 2D inputs
    with pytest.warns(UserWarning):
        # STFT(2D) gives 3D and iSTFT(3D) gives 3D. UserWarning about that.
        assert_allclose(enc(inp), enc(inp[0]))
    # Assert for 1D inputs
    assert_allclose(enc(inp)[0], enc(inp[0, 0]))

    out = dec(tf_out)
    # Assert for 4D inputs
    tf_out_4d = tf_out.repeat(1, 2, 1, 1)
    out_4d = dec(tf_out_4d)
    assert_allclose(out, out_4d[:, 0])
    # Asser for 2D inputs
    assert_allclose(out[0, 0], dec(tf_out[0]))
    assert tf_out.shape[1] == enc.filterbank.n_feats_out