示例#1
0
NUM_WORKERS = 5
train_loader = DataLoader(timit_train, shuffle=True, batch_size=BATCH_SIZE,
                          num_workers=NUM_WORKERS, drop_last=True)
val_loader = DataLoader(timit_val, batch_size=BATCH_SIZE,
                        num_workers=NUM_WORKERS, drop_last=True)

# some random parameters, does it look sensible?
LR = 1e-3
REDUCE_LR_PATIENCE = 5
EARLY_STOP_PATIENCE = 20
MAX_EPOCHS = 300

# the model here should be constructed in the script accordingly to the passed config (including the model type)
# most of the models accept `sample_rate` parameter for encoders, which is important (default is 16000, override)
#model = DCUNet("DCUNet-20", fix_length_mode="trim", sample_rate=SAMPLE_RATE)
model = ConvTasNet(n_src=1)
checkpoint = ModelCheckpoint(
        filename='{epoch:02d}-{val_loss:.2f}',
        monitor="val_loss",
        mode="min",
        save_top_k=5,
        verbose=True
    )

optimizer = optim.Adam(model.parameters(), lr=LR)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=REDUCE_LR_PATIENCE)
early_stopping = EarlyStopping(monitor='val_loss', patience=EARLY_STOP_PATIENCE)

# Probably we also need to subclass `System`, in order to log the target metrics on the validation set (PESQ/STOI)
system = System(model, optimizer, sisdr_loss_wrapper, train_loader, val_loader, scheduler)
示例#2
0
文件: eval.py 项目: bmorris3/asteroid
def main(conf):
    model_path = os.path.join(conf['exp_dir'], 'best_model.pth')
    model = ConvTasNet.from_pretrained(model_path)
    # Handle device placement
    if conf['use_gpu']:
        model.cuda()
    model_device = next(model.parameterss()).device
    test_set = LibriMix(csv_dir=conf['test_dir'],
                        task=conf['task'],
                        sample_rate=conf['sample_rate'],
                        n_src=conf['train_conf']['data']['n_src'],
                        segment=None)  # Uses all segment length
    # Used to reorder sources only
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from='pw_mtx')

    # Randomly choose the indexes of sentences to save.
    eval_save_dir = os.path.join(conf['exp_dir'], conf['out_dir'])
    ex_save_dir = os.path.join(eval_save_dir, 'examples/')
    if conf['n_save_ex'] == -1:
        conf['n_save_ex'] = len(test_set)
    save_idx = random.sample(range(len(test_set)), conf['n_save_ex'])
    series_list = []
    torch.no_grad().__enter__()
    for idx in tqdm(range(len(test_set))):
        # Forward the network on the mixture.
        mix, sources = tensors_to_device(test_set[idx], device=model_device)
        est_sources = model(mix.unsqueeze(0))
        loss, reordered_sources = loss_func(est_sources,
                                            sources[None],
                                            return_est=True)
        mix_np = mix.cpu().data.numpy()
        sources_np = sources.squeeze().cpu().data.numpy()
        est_sources_np = reordered_sources.squeeze().cpu().data.numpy()
        # For each utterance, we get a dictionary with the mixture path,
        # the input and output metrics
        utt_metrics = get_metrics(mix_np,
                                  sources_np,
                                  est_sources_np,
                                  sample_rate=conf['sample_rate'])
        utt_metrics['mix_path'] = test_set.mixture_path
        series_list.append(pd.Series(utt_metrics))

        # Save some examples in a folder. Wav files and metrics as text.
        if idx in save_idx:
            local_save_dir = os.path.join(ex_save_dir, 'ex_{}/'.format(idx))
            os.makedirs(local_save_dir, exist_ok=True)
            sf.write(local_save_dir + "mixture.wav", mix_np,
                     conf['sample_rate'])
            # Loop over the sources and estimates
            for src_idx, src in enumerate(sources_np):
                sf.write(local_save_dir + "s{}.wav".format(src_idx), src,
                         conf['sample_rate'])
            for src_idx, est_src in enumerate(est_sources_np):
                sf.write(local_save_dir + "s{}_estimate.wav".format(src_idx),
                         est_src, conf['sample_rate'])
            # Write local metrics to the example folder.
            with open(local_save_dir + 'metrics.json', 'w') as f:
                json.dump(utt_metrics, f, indent=0)

    # Save all metrics to the experiment folder.
    all_metrics_df = pd.DataFrame(series_list)
    all_metrics_df.to_csv(os.path.join(eval_save_dir, 'all_metrics.csv'))

    # Print and save summary metrics
    final_results = {}
    for metric_name in compute_metrics:
        input_metric_name = 'input_' + metric_name
        ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name]
        final_results[metric_name] = all_metrics_df[metric_name].mean()
        final_results[metric_name + '_imp'] = ldf.mean()
    print('Overall metrics :')
    pprint(final_results)
    with open(os.path.join(eval_save_dir, 'final_metrics.json'), 'w') as f:
        json.dump(final_results, f, indent=0)

    model_dict = torch.load(model_path, map_location='cpu')
    publishable = save_publishable(os.path.join(conf['exp_dir'],
                                                'publish_dir'),
                                   model_dict,
                                   metrics=final_results,
                                   train_conf=train_conf)
示例#3
0
    total_df.sort_values(['SI-SDR', 'PESQ', 'STOI'], inplace=True)
    total_df = total_df.round({'SI-SDR': 3, 'PESQ': 3, 'STOI': 3})
    print(total_df)
    return total_df

models = {
    'input': None,
    'baseline': RegressionFCNN.from_pretrained('models/baseline_model_v1.pt'),
    'vae': VAE.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/workspace/models/VAE.pt'),
    'auto_encoder': VAE.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/workspace/models/AutoEncoder.pt'),
    'waveunet_v1': WaveUNet.from_pretrained('models/waveunet_model_adapt.pt'),
    'dcunet_20': DCUNet.from_pretrained('models/dcunet_20_random_v2.pt'),
    'dccrn': DCCRNet.from_pretrained('models/dccrn_random_v1.pt'),
    'smolnet': SMoLnet.from_pretrained('models/SMoLnet.pt'),
    'dprnn': DPRNNTasNet.from_pretrained('models/dprnn_model.pt'),
    'conv_tasnet': ConvTasNet.from_pretrained('models/convtasnet_model.pt'),
    'dptnet': DPTNet.from_pretrained('models/dptnet_model.pt'),
    'demucs': Demucs.from_pretrained('models/Demucs.pt'),
}

def eval_all_and_plot(models, test_set, directory, plot_name):
    results_dfs = {}

    for model_name, model in models.items():
        print(f'Evaluating {model_labels[model_name]}')
        csv_path = f'/jmain01/home/JAD007/txk02/aaa18-txk02/DRONE_project/asteroid/notebooks/{directory}/{model_name}.csv'

        if os.path.isfile(csv_path):
            print('Results already available')
            df = pd.read_csv(csv_path)
        else:
示例#4
0
def main(conf):
    model_path = os.path.join(conf["exp_dir"], "best_model.pth")
    model = ConvTasNet.from_pretrained(model_path)
    model = LambdaOverlapAdd(
        nnet=model,  # function to apply to each segment.
        n_src=2,  # number of sources in the output of nnet
        window_size=64000,  # Size of segmenting window
        hop_size=None,  # segmentation hop size
        window="hanning",  # Type of the window (see scipy.signal.get_window
        reorder_chunks=False,  # Whether to reorder each consecutive segment.
        enable_grad=
        False,  # Set gradient calculation on of off (see torch.set_grad_enabled)
    )

    # Handle device placement
    if conf["use_gpu"]:
        model.cuda()

    model_device = next(model.parameters()).device

    # Evaluation is mode using 'remix' mixture
    dataset_kwargs = {
        "root_path": Path(conf["train_conf"]["data"]["root_path"]),
        "task": conf["train_conf"]["data"]["task"],
        "sample_rate": conf["train_conf"]["data"]["sample_rate"],
        "num_workers": conf["train_conf"]["training"]["num_workers"],
        "mixture": "remix",
    }

    test_set = DAMPVSEPDataset(split="test", **dataset_kwargs)

    # Randomly choose the indexes of sentences to save.
    eval_save_dir = os.path.join(conf["exp_dir"], conf["out_dir"])
    ex_save_dir = os.path.join(eval_save_dir, "examples/")
    if conf["n_save_ex"] == -1:
        conf["n_save_ex"] = len(test_set)
    save_idx = random.sample(range(len(test_set)), conf["n_save_ex"])
    series_list = []
    torch.no_grad().__enter__()
    for idx in tqdm(range(len(test_set))):
        # Forward the network on the mixture.
        mix, sources = test_set[idx]
        mix = mix.to(model_device)
        est_sources = model.forward(mix.unsqueeze(0).unsqueeze(1))
        mix_np = mix.squeeze(0).cpu().data.numpy()
        sources_np = sources.cpu().data.numpy()
        est_sources_np = est_sources.squeeze(0).cpu().data.numpy()

        # For each utterance, we get a dictionary with the mixture path,
        # the input and output metrics
        utt_metrics = get_metrics(
            mix_np,
            sources_np,
            est_sources_np,
            sample_rate=conf["sample_rate"],
            metrics_list=compute_metrics,
            average=False,
        )
        utt_metrics = split_metric_dict(utt_metrics)
        utt_metrics["mix_path"] = test_set.mixture_path
        series_list.append(pd.Series(utt_metrics))
        # Save some examples in a folder. Wav files and metrics as text.
        if idx in save_idx:
            local_save_dir = os.path.join(ex_save_dir, "ex_{}/".format(idx))
            os.makedirs(local_save_dir, exist_ok=True)
            sf.write(local_save_dir + "mixture.wav", mix_np / max(abs(mix_np)),
                     conf["sample_rate"])

            # Loop over the sources and estimates
            for src_idx, src in enumerate(sources_np):
                sf.write(local_save_dir + "s{}.wav".format(src_idx), src,
                         conf["sample_rate"])

            for src_idx, est_src in enumerate(est_sources_np):
                est_src *= np.max(np.abs(mix_np)) / np.max(np.abs(est_src))
                sf.write(
                    local_save_dir + "s{}_estimate.wav".format(src_idx),
                    est_src,
                    conf["sample_rate"],
                )
            # Write local metrics to the example folder.
            with open(local_save_dir + "metrics.json", "w") as f:
                json.dump(utt_metrics, f, indent=0)

    # Save all metrics to the experiment folder.
    all_metrics_df = pd.DataFrame(series_list)
    all_metrics_df.to_csv(os.path.join(eval_save_dir, "all_metrics.csv"))

    # Print and save summary metrics
    final_results = {}
    for metric_name in compute_metrics:
        for s in ["", "_s0", "_s1"]:
            input_metric_name = "input_" + f"{metric_name}{s}"
            ldf = all_metrics_df[f"{metric_name}{s}"] - all_metrics_df[
                input_metric_name]
            final_results[f"{metric_name}{s}"] = all_metrics_df[
                f"{metric_name}{s}"].mean()
            final_results[f"{metric_name}{s}" + "_imp"] = ldf.mean()
    print("Overall metrics :")
    pprint(final_results)
    with open(os.path.join(eval_save_dir, "final_metrics.json"), "w") as f:
        json.dump(final_results, f, indent=0)

    model_dict = torch.load(model_path, map_location="cpu")
    os.makedirs(os.path.join(conf["exp_dir"], "publish_dir"), exist_ok=True)
    publishable = save_publishable(
        os.path.join(conf["exp_dir"], "publish_dir"),
        model_dict,
        metrics=final_results,
        train_conf=train_conf,
    )
示例#5
0
def main(conf):
    compute_metrics = update_compute_metrics(conf["compute_wer"], COMPUTE_METRICS)
    anno_df = pd.read_csv(Path(conf["test_dir"]).parent.parent.parent / "test_annotations.csv")
    wer_tracker = (
        MockWERTracker() if not conf["compute_wer"] else WERTracker(ASR_MODEL_PATH, anno_df)
    )
    model_path = os.path.join(conf["exp_dir"], "best_model.pth")
    model = ConvTasNet.from_pretrained(model_path)
    # Handle device placement
    if conf["use_gpu"]:
        model.cuda()
    model_device = next(model.parameters()).device
    test_set = LibriMix(
        csv_dir=conf["test_dir"],
        task=conf["task"],
        sample_rate=conf["sample_rate"],
        n_src=conf["train_conf"]["data"]["n_src"],
        segment=None,
        return_id=True,
    )  # Uses all segment length
    # Used to reorder sources only
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx")

    # Randomly choose the indexes of sentences to save.
    eval_save_dir = os.path.join(conf["exp_dir"], conf["out_dir"])
    ex_save_dir = os.path.join(eval_save_dir, "examples/")
    if conf["n_save_ex"] == -1:
        conf["n_save_ex"] = len(test_set)
    save_idx = random.sample(range(len(test_set)), conf["n_save_ex"])
    series_list = []
    torch.no_grad().__enter__()
    for idx in tqdm(range(len(test_set))):
        # Forward the network on the mixture.
        mix, sources, ids = test_set[idx]
        mix, sources = tensors_to_device([mix, sources], device=model_device)
        est_sources = model(mix.unsqueeze(0))
        loss, reordered_sources = loss_func(est_sources, sources[None], return_est=True)
        mix_np = mix.cpu().data.numpy()
        sources_np = sources.cpu().data.numpy()
        est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy()
        # For each utterance, we get a dictionary with the mixture path,
        # the input and output metrics
        utt_metrics = get_metrics(
            mix_np,
            sources_np,
            est_sources_np,
            sample_rate=conf["sample_rate"],
            metrics_list=COMPUTE_METRICS,
        )
        utt_metrics["mix_path"] = test_set.mixture_path
        utt_metrics.update(
            **wer_tracker(
                mix=mix_np,
                clean=sources_np,
                estimate=est_sources_np,
                wav_id=ids,
                sample_rate=conf["sample_rate"],
            )
        )
        series_list.append(pd.Series(utt_metrics))

        # Save some examples in a folder. Wav files and metrics as text.
        if idx in save_idx:
            local_save_dir = os.path.join(ex_save_dir, "ex_{}/".format(idx))
            os.makedirs(local_save_dir, exist_ok=True)
            sf.write(local_save_dir + "mixture.wav", mix_np, conf["sample_rate"])
            # Loop over the sources and estimates
            for src_idx, src in enumerate(sources_np):
                sf.write(local_save_dir + "s{}.wav".format(src_idx), src, conf["sample_rate"])
            for src_idx, est_src in enumerate(est_sources_np):
                est_src *= np.max(np.abs(mix_np)) / np.max(np.abs(est_src))
                sf.write(
                    local_save_dir + "s{}_estimate.wav".format(src_idx),
                    est_src,
                    conf["sample_rate"],
                )
            # Write local metrics to the example folder.
            with open(local_save_dir + "metrics.json", "w") as f:
                json.dump(utt_metrics, f, indent=0)

    # Save all metrics to the experiment folder.
    all_metrics_df = pd.DataFrame(series_list)
    all_metrics_df.to_csv(os.path.join(eval_save_dir, "all_metrics.csv"))

    # Print and save summary metrics
    final_results = {}
    for metric_name in compute_metrics:
        input_metric_name = "input_" + metric_name
        ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name]
        final_results[metric_name] = all_metrics_df[metric_name].mean()
        final_results[metric_name + "_imp"] = ldf.mean()

    print("Overall metrics :")
    pprint(final_results)
    if conf["compute_wer"]:
        print("\nWER report")
        wer_card = wer_tracker.final_report_as_markdown()
        print(wer_card)
        # Save the report
        with open(os.path.join(eval_save_dir, "final_wer.md"), "w") as f:
            f.write(wer_card)

    with open(os.path.join(eval_save_dir, "final_metrics.json"), "w") as f:
        json.dump(final_results, f, indent=0)

    model_dict = torch.load(model_path, map_location="cpu")
    os.makedirs(os.path.join(conf["exp_dir"], "publish_dir"), exist_ok=True)
    publishable = save_publishable(
        os.path.join(conf["exp_dir"], "publish_dir"),
        model_dict,
        metrics=final_results,
        train_conf=train_conf,
    )