示例#1
0
def test_savitzky_golay_fft():
    y = np.random.normal(size=100)

    for width in [3, 5]:
        for order in range(width - 1):
            f1 = savitzky_golay(y, width, order, use_fft=False)
            f2 = savitzky_golay(y, width, order, use_fft=True)
            assert_allclose(f1, f2)
示例#2
0
def test_savitzky_golay_fft():
    y = np.random.normal(size=100)

    for width in [3, 5]:
        for order in range(width - 1):
            with pytest.warns(AstroMLDeprecationWarning):
                f1 = savitzky_golay(y, width, order, use_fft=False)
                f2 = savitzky_golay(y, width, order, use_fft=True)
            assert_allclose(f1, f2)
示例#3
0
h = np.exp(-0.5 * ((t - 20.) / 1.0)**2)
hN = h + np.random.normal(0, 0.5, size=h.shape)

Df = 1. / N / dt
f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
HN = fftpack.fft(hN)

#------------------------------------------------------------
# Set up the Wiener filter:
#  fit a model to the PSD consisting of the sum of a
#  gaussian and white noise
h_smooth, PSD, P_S, P_N, Phi = wiener_filter(t, hN, return_PSDs=True)

#------------------------------------------------------------
# Use the Savitzky-Golay filter to filter the values
h_sg = savitzky_golay(hN, window_size=201, order=4, use_fft=False)

#------------------------------------------------------------
# Plot the results
N = len(t)
Df = 1. / N / (t[1] - t[0])
f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
HN = fftpack.fft(hN)

fig = plt.figure(figsize=(5, 3.75))
fig.subplots_adjust(wspace=0.05,
                    hspace=0.25,
                    bottom=0.1,
                    top=0.95,
                    left=0.12,
                    right=0.95)
示例#4
0
h = np.exp(-0.5 * ((t - 20.) / 1.0) ** 2)
hN = h + np.random.normal(0, 0.5, size=h.shape)

Df = 1. / N / dt
f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
HN = fftpack.fft(hN)

#------------------------------------------------------------
# Set up the Wiener filter:
#  fit a model to the PSD consisting of the sum of a
#  gaussian and white noise
h_smooth, PSD, P_S, P_N, Phi = wiener_filter(t, hN, return_PSDs=True)

#------------------------------------------------------------
# Use the Savitzky-Golay filter to filter the values
h_sg = savitzky_golay(hN, window_size=201, order=4, use_fft=False)

#------------------------------------------------------------
# Plot the results
N = len(t)
Df = 1. / N / (t[1] - t[0])
f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
HN = fftpack.fft(hN)

fig = plt.figure(figsize=(5, 3.75))
fig.subplots_adjust(wspace=0.05, hspace=0.25,
                    bottom=0.1, top=0.95,
                    left=0.12, right=0.95)

# First plot: noisy signal
ax = fig.add_subplot(221)
示例#5
0
h = np.exp(-0.5 * ((t - 20.0) / 1.0) ** 2)
hN = h + np.random.normal(0, 0.5, size=h.shape)

Df = 1.0 / N / dt
f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
HN = fftpack.fft(hN)

# ------------------------------------------------------------
# Set up the Wiener filter:
#  fit a model to the PSD consisting of the sum of a
#  gaussian and white noise
h_smooth, PSD, P_S, P_N, Phi = wiener_filter(t, hN, return_PSDs=True)

# ------------------------------------------------------------
# Use the Savitzky-Golay filter to filter the values
h_sg = savitzky_golay(hN, window_size=201, order=4)

# ------------------------------------------------------------
# Plot the results
N = len(t)
Df = 1.0 / N / (t[1] - t[0])
f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
HN = fftpack.fft(hN)

fig = plt.figure()
fig.subplots_adjust(wspace=0.05, hspace=0.25, bottom=0.1, top=0.95, left=0.12, right=0.95)

# First plot: noisy signal
ax = fig.add_subplot(221)
ax.plot(t, hN, "-", c="gray", lw=1)
ax.plot(t, np.zeros_like(t), ":k", lw=0.5)
示例#6
0
def test_savitzky_golay():
    y = np.zeros(100)
    y[::2] = 1
    with pytest.warns(AstroMLDeprecationWarning):
        f = savitzky_golay(y, window_size=3, order=1)
    assert_allclose(f, (2 - y) / 3.)
示例#7
0
h = np.exp(-0.5 * ((t - 20.) / 1.0) ** 2)
hN = h + np.random.normal(0, 0.5, size=h.shape)

Df = 1. / N / dt
f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
HN = fftpack.fft(hN)

#------------------------------------------------------------
# Set up the Wiener filter:
#  fit a model to the PSD consisting of the sum of a
#  gaussian and white noise
h_smooth, PSD, P_S, P_N, Phi = wiener_filter(t, hN, return_PSDs=True)

#------------------------------------------------------------
# Use the Savitzky-Golay filter to filter the values
h_sg = savitzky_golay(hN, window_size=201, order=4)

#------------------------------------------------------------
# Plot the results
N = len(t)
Df = 1. / N / (t[1] - t[0])
f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
HN = fftpack.fft(hN)

fig = plt.figure()
fig.subplots_adjust(wspace=0.05, hspace=0.25,
                    bottom=0.1, top=0.95,
                    left=0.12, right=0.95)

# First plot: noisy signal
ax = fig.add_subplot(221)
示例#8
0
def test_savitzky_golay():
    y = np.zeros(100)
    y[::2] = 1
    f = savitzky_golay(y, window_size=3, order=1)
    assert_allclose(f, (2 - y) / 3.)
示例#9
0
def compute_Weiner():


    from scipy import optimize, fftpack
    from astroML.filters import savitzky_golay, wiener_filter

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)

#------------------------------------------------------------
# Create the noisy data
    np.random.seed(5)
    N = 2000
    dt = 0.05

    t = dt * np.arange(N)
    h = np.exp(-0.5 * ((t - 20.) / 1.0) ** 2)
    hN = h + np.random.normal(0, 0.5, size=h.shape)

    Df = 1. / N / dt
    f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
    HN = fftpack.fft(hN)

#------------------------------------------------------------
# Set up the Wiener filter:
#  fit a model to the PSD consisting of the sum of a
#  gaussian and white noise
    h_smooth, PSD, P_S, P_N, Phi = wiener_filter(t, hN, return_PSDs=True)

#------------------------------------------------------------
# Use the Savitzky-Golay filter to filter the values
    h_sg = savitzky_golay(hN, window_size=201, order=4, use_fft=False)

#------------------------------------------------------------
# Plot the results
    N = len(t)
    Df = 1. / N / (t[1] - t[0])
    f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
    HN = fftpack.fft(hN)

    fig = plt.figure(figsize=(5, 3.75))
    fig.subplots_adjust(wspace=0.05, hspace=0.25,
                    bottom=0.1, top=0.95,
                    left=0.12, right=0.95)

# First plot: noisy signal
    ax = fig.add_subplot(221)
    ax.plot(t, hN, '-', c='gray')
    ax.plot(t, np.zeros_like(t), ':k')
    ax.text(0.98, 0.95, "Input Signal", ha='right', va='top',
        transform=ax.transAxes, bbox=dict(fc='w', ec='none'))

    ax.set_xlim(0, 90)
    ax.set_ylim(-0.5, 1.5)

    ax.xaxis.set_major_locator(plt.MultipleLocator(20))
    ax.set_xlabel(r'$\lambda$')
    ax.set_ylabel('flux')

# Second plot: filtered signal
    ax = plt.subplot(222)
    ax.plot(t, np.zeros_like(t), ':k', lw=1)
    ax.plot(t, h_smooth, '-k', lw=1.5, label='Wiener')
    ax.plot(t, h_sg, '-', c='gray', lw=1, label='Savitzky-Golay')

    ax.text(0.98, 0.95, "Filtered Signal", ha='right', va='top',
        transform=ax.transAxes)
    ax.legend(loc='upper right', bbox_to_anchor=(0.98, 0.9), frameon=False)

    ax.set_xlim(0, 90)
    ax.set_ylim(-0.5, 1.5)

    ax.yaxis.set_major_formatter(plt.NullFormatter())
    ax.xaxis.set_major_locator(plt.MultipleLocator(20))
    ax.set_xlabel(r'$\lambda$')

# Third plot: Input PSD
    ax = fig.add_subplot(223)
    ax.scatter(f[:N / 2], PSD[:N / 2], s=9, c='k', lw=0)
    ax.plot(f[:N / 2], P_S[:N / 2], '-k')
    ax.plot(f[:N / 2], P_N[:N / 2], '-k')

    ax.text(0.98, 0.95, "Input PSD", ha='right', va='top',
        transform=ax.transAxes)

    ax.set_ylim(-100, 3500)
    ax.set_xlim(0, 0.9)

    ax.yaxis.set_major_locator(plt.MultipleLocator(1000))
    ax.xaxis.set_major_locator(plt.MultipleLocator(0.2))
    ax.set_xlabel('$f$')
    ax.set_ylabel('$PSD(f)$')

# Fourth plot: Filtered PSD
    ax = fig.add_subplot(224)
    filtered_PSD = (Phi * abs(HN)) ** 2
    ax.scatter(f[:N / 2], filtered_PSD[:N / 2], s=9, c='k', lw=0)

    ax.text(0.98, 0.95, "Filtered PSD", ha='right', va='top',
        transform=ax.transAxes)

    ax.set_ylim(-100, 3500)
    ax.set_xlim(0, 0.9)

    ax.yaxis.set_major_locator(plt.MultipleLocator(1000))
    ax.yaxis.set_major_formatter(plt.NullFormatter())
    ax.xaxis.set_major_locator(plt.MultipleLocator(0.2))
    ax.set_xlabel('$f$')

    plt.show()    
示例#10
0
    pfit = np.poly1d(np.polyfit(sortedPhase, fluxByPhase, deg=d, w=weights))
    fitCurve = pfit(sortedPhase)
    strCurve = fluxByPhase / fitCurve
else:
    fluxByPhase = [f for _, f in sorted(zip(phase, astDiffFlux))]
    errByPhase = [f for _, f in sorted(zip(phase, astFluxErr))]
    sortedPhase = sorted(phase)
    sortedPhaseBin = sorted(rtp.binning(phase, time, binW, ind)[0])
    fluxByPhaseBin = rtp.binWeighted(fluxByPhase, time, astFluxErr, binW,
                                     ind)[0]
    weights = [1. / (err**2) for err in errByPhase]
    pfit = np.poly1d(np.polyfit(sortedPhase, fluxByPhase, deg=d, w=weights))
    fitCurve = pfit(sortedPhase)
    strCurve = fluxByPhase / fitCurve

fluxByPhaseSG = savitzky_golay(fluxByPhase, window_size=wsSG, order=4)

#----- Fourier Fit ------------------------------------------------------------
omega = 2 * np.pi / Prot * 24.
mtf = MultiTermFit(omega, ffOrder)
mtf.fit(time, astDiffFlux, astFluxErr)
phaseFit, fluxFit, phasedTime = mtf.predict(1000, return_phased_times=True)

phaseFit -= phasedTime[0]
phasedTime -= phasedTime[0]
phasedTime = [1 + t if t < 0 else t for t in phasedTime]
phaseFit = [1 + t if t < 0 else t for t in phaseFit]

plt.errorbar(phasedTime,
             astDiffFlux,
             astFluxErr,