示例#1
0
def check_IFT_continuous(a, t0, f0, method, f):
    H = sinegauss_FT(f, t0, f0, a)
    t, h = IFT_continuous(f, H, method=method)
    assert_allclose(h, sinegauss(t, t0, f0, a), atol=1E-12)
示例#2
0
def check_wavelets(t0, f0, Q, t):
    h = sinegauss(t, t0, f0, Q)
    f, H = FT_continuous(t, h)
    H2 = sinegauss_FT(f, t0, f0, Q)
    assert_allclose(H, H2, atol=1E-8)
示例#3
0
def check_PSD_continuous(a, t0, f0, method, t):
    h = sinegauss(t, t0, f0, a)
    f, P = PSD_continuous(t, h, method=method)
    assert_allclose(P, sinegauss_PSD(f, t0, f0, a), atol=1E-12)
示例#4
0
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
import numpy as np
from matplotlib import pyplot as plt

from astroML.fourier import FT_continuous, IFT_continuous, sinegauss

#------------------------------------------------------------
# Set up the wavelets
t0 = 0
t = np.linspace(-0.4, 0.4, 10000)
f0 = np.array([5, 5, 10, 10])
Q = np.array([1, 0.5, 1, 0.5])

# compute wavelets all at once
W = sinegauss(t, t0, f0[:, None], Q[:, None])

#------------------------------------------------------------
# Plot the wavelets
fig = plt.figure()
fig.subplots_adjust(hspace=0.05, wspace=0.05)

# in each panel, plot and label a different wavelet
for i in range(4):
    ax = fig.add_subplot(221 + i)
    ax.plot(t, W[i].real, '-k')
    ax.plot(t, W[i].imag, '--k')

    ax.text(0.02, 0.98, "$f_0 = %i$\n$Q = %.1f$" % (f0[i], Q[i]),
            ha='left', va='top', transform=ax.transAxes, size=14)
示例#5
0
def check_FT_continuous(a, t0, f0, method, t):
    h = sinegauss(t, t0, f0, a)
    f, H = FT_continuous(t, h, method=method)
    assert_allclose(H, sinegauss_FT(f, t0, f0, a), atol=1E-12)
示例#6
0
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Choose parameters for the wavelet
N = 10000
t0 = 5
f0 = 2
Q = 2

#------------------------------------------------------------
# Compute the wavelet on a grid of times
Dt = 0.01
t = t0 + Dt * (np.arange(N) - N / 2)
h = sinegauss(t, t0, f0, Q)

#------------------------------------------------------------
# Approximate the continuous Fourier Transform
f, H = FT_continuous(t, h)

rms_err = np.sqrt(np.mean(abs(H - sinegauss_FT(f, t0, f0, Q)) ** 2))

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 3.75))
fig.subplots_adjust(hspace=0.25)

# plot the wavelet
ax = fig.add_subplot(211)
ax.plot(t, h.real, '-', c='black', label='$Re[h]$', lw=1)
示例#7
0
from scipy import fftpack

from astroML.fourier import FT_continuous, sinegauss, sinegauss_FT

#------------------------------------------------------------
# Choose parameters for the wavelet
N = 10000
t0 = 5
f0 = 2
Q = 2

#------------------------------------------------------------
# Compute the wavelet on a grid of times
Dt = 0.01
t = t0 + Dt * (np.arange(N) - N / 2)
h = sinegauss(t, t0, f0, Q)

#------------------------------------------------------------
# Approximate the continuous Fourier Transform
f, H = FT_continuous(t, h)

rms_err = np.sqrt(np.mean(abs(H - sinegauss_FT(f, t0, f0, Q))**2))

#------------------------------------------------------------
# Plot the results
fig = plt.figure()
fig.subplots_adjust(hspace=0.25)

# plot the wavelet
ax = fig.add_subplot(211)
ax.plot(t, h.real, '-', c='black', label='$Re[h]$', lw=1)
示例#8
0
def test_FT_continuous(a, t0, f0, method):
    t = np.linspace(-9, 10, 10000)
    h = sinegauss(t, t0, f0, a)
    f, H = FT_continuous(t, h, method=method)
    assert_allclose(H, sinegauss_FT(f, t0, f0, a), atol=1E-12)
示例#9
0
def test_PSD_continuous(a, t0, f0, method):
    t = np.linspace(-9, 10, 10000)
    h = sinegauss(t, t0, f0, a)
    f, P = PSD_continuous(t, h, method=method)
    assert_allclose(P, sinegauss_PSD(f, t0, f0, a), atol=1E-12)
示例#10
0
def check_IFT_continuous(a, t0, f0, method, f):
    H = sinegauss_FT(f, t0, f0, a)
    t, h = IFT_continuous(f, H, method=method)
    assert_allclose(h, sinegauss(t, t0, f0, a), atol=1E-12)
示例#11
0
def test_wavelets(t0, f0, Q):
    t = np.linspace(-10, 10, 10000)
    h = sinegauss(t, t0, f0, Q)
    f, H = FT_continuous(t, h)
    H2 = sinegauss_FT(f, t0, f0, Q)
    assert_allclose(H, H2, atol=1E-8)
示例#12
0
def check_wavelets(t0, f0, Q, t):
    h = sinegauss(t, t0, f0, Q)
    f, H = FT_continuous(t, h)
    H2 = sinegauss_FT(f, t0, f0, Q)
    assert_allclose(H, H2, atol=1E-8)
示例#13
0
def check_PSD_continuous(a, t0, f0, method, t):
    h = sinegauss(t, t0, f0, a)
    f, P = PSD_continuous(t, h, method=method)
    assert_allclose(P, sinegauss_PSD(f, t0, f0, a), atol=1E-12)
示例#14
0
def check_FT_continuous(a, t0, f0, method, t):
    h = sinegauss(t, t0, f0, a)
    f, H = FT_continuous(t, h, method=method)
    assert_allclose(H, sinegauss_FT(f, t0, f0, a), atol=1E-12)
示例#15
0
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Sample the function: localized noise
np.random.seed(0)

N = 1024
t = np.linspace(-5, 5, N)
x = np.ones(len(t))

h = np.random.normal(0, 1, len(t))
h *= np.exp(-0.5 * (t / 0.5)**2)

#------------------------------------------------------------
# Compute an example wavelet
W = sinegauss(t, 0, 1.5, Q=1.0)

#------------------------------------------------------------
# Compute the wavelet PSD
f0 = np.linspace(0.5, 7.5, 100)
wPSD = wavelet_PSD(t, h, f0, Q=1.0)

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 5))
fig.subplots_adjust(hspace=0.05, left=0.12, right=0.95, bottom=0.08, top=0.95)

# First panel: the signal
ax = fig.add_subplot(311)
ax.plot(t, h, '-k', lw=1)
ax.text(0.02,
示例#16
0
def check_IFT_continuous(a, t0, f0, method):
    f = np.linspace(-9, 10, 10000)
    H = sinegauss_FT(f, t0, f0, a)
    t, h = IFT_continuous(f, H, method=method)
    assert_allclose(h, sinegauss(t, t0, f0, a), atol=1E-12)
示例#17
0
    FT_continuous, IFT_continuous, sinegauss, sinegauss_FT, wavelet_PSD

#------------------------------------------------------------
# Sample the function: localized noise
np.random.seed(0)

N = 1024
t = np.linspace(-5, 5, N)
x = np.ones(len(t))

h = np.random.normal(0, 1, len(t))
h *= np.exp(-0.5 * (t / 0.5) ** 2)

#------------------------------------------------------------
# Compute an example wavelet
W = sinegauss(t, 0, 1.5, Q=1.0)

#------------------------------------------------------------
# Compute the wavelet PSD
f0 = np.linspace(0.5, 7.5, 100)
wPSD = wavelet_PSD(t, h, f0, Q=1.0)

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(8, 8))
fig.subplots_adjust(hspace=0.05, left=0.12, right=0.95, bottom=0.08, top=0.95)

# First panel: the signal
ax = fig.add_subplot(311)
ax.plot(t, h, '-k', lw=1)
ax.text(0.02, 0.95, ("Input Signal:\n"
示例#18
0
def compute_Gaussian():


    from astroML.fourier import\
        FT_continuous, IFT_continuous, sinegauss, sinegauss_FT, wavelet_PSD

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)

#------------------------------------------------------------
# Sample the function: localized noise
    np.random.seed(0)

    N = 1024
    t = np.linspace(-5, 5, N)
    x = np.ones(len(t))

    h = np.random.normal(0, 1, len(t))
    h *= np.exp(-0.5 * (t / 0.5) ** 2)

#------------------------------------------------------------
# Compute an example wavelet
    W = sinegauss(t, 0, 1.5, Q=1.0)

#------------------------------------------------------------
# Compute the wavelet PSD
    f0 = np.linspace(0.5, 7.5, 100)
    wPSD = wavelet_PSD(t, h, f0, Q=1.0)

#------------------------------------------------------------
# Plot the results
    fig = plt.figure(figsize=(5, 5))
    fig.subplots_adjust(hspace=0.05, left=0.12, right=0.95, bottom=0.08, top=0.95)

# First panel: the signal
    ax = fig.add_subplot(311)
    ax.plot(t, h, '-k', lw=1)
    ax.text(0.02, 0.95, ("Input Signal:\n"
                     "Localized Gaussian noise"),
        ha='left', va='top', transform=ax.transAxes)

    ax.set_xlim(-4, 4)
    ax.set_ylim(-2.9, 2.9)
    ax.xaxis.set_major_formatter(plt.NullFormatter())
    ax.set_ylabel('$h(t)$')

# Second panel: an example wavelet
    ax = fig.add_subplot(312)
    ax.plot(t, W.real, '-k', label='real part', lw=1)
    ax.plot(t, W.imag, '--k', label='imag part', lw=1)

    ax.text(0.02, 0.95, ("Example Wavelet\n"
                     "$t_0 = 0$, $f_0=1.5$, $Q=1.0$"),
        ha='left', va='top', transform=ax.transAxes)
    ax.text(0.98, 0.05,
        (r"$w(t; t_0, f_0, Q) = e^{-[f_0 (t - t_0) / Q]^2}"
         "e^{2 \pi i f_0 (t - t_0)}$"),
        ha='right', va='bottom', transform=ax.transAxes)

    ax.legend(loc=1)

    ax.set_xlim(-4, 4)
    ax.set_ylim(-1.4, 1.4)
    ax.set_ylabel('$w(t; t_0, f_0, Q)$')
    ax.xaxis.set_major_formatter(plt.NullFormatter())

# Third panel: the spectrogram
    ax = plt.subplot(313)
    ax.imshow(wPSD, origin='lower', aspect='auto', cmap=plt.cm.jet,
          extent=[t[0], t[-1], f0[0], f0[-1]])

    ax.text(0.02, 0.95, ("Wavelet PSD"), color='w',
        ha='left', va='top', transform=ax.transAxes)

    ax.set_xlim(-4, 4)
    ax.set_ylim(0.5, 7.5)

    ax.set_xlabel('$t$')
    ax.set_ylabel('$f_0$')

    plt.show()