示例#1
0
def check_sigmaG(a, axis):
    from scipy.special import erfinv
    factor = 1. / (2 * np.sqrt(2) * erfinv(0.5))

    sigmaG1 = sigmaG(a, axis=axis)
    q25, q75 = np.percentile(a, [25, 75], axis=axis)
    sigmaG2 = factor * (q75 - q25)

    assert_array_almost_equal(sigmaG1, sigmaG2)
示例#2
0
def check_sigmaG(a, axis):
    from scipy.special import erfinv
    factor = 1. / (2 * np.sqrt(2) * erfinv(0.5))

    sigmaG1 = sigmaG(a, axis=axis)
    q25, q75 = np.percentile(a, [25, 75], axis=axis)
    sigmaG2 = factor * (q75 - q25)

    assert_array_almost_equal(sigmaG1, sigmaG2)
示例#3
0
def test_sigmaG(axis):
    np.random.seed(0)
    a = np.random.random((20, 40, 60))

    from scipy.special import erfinv
    factor = 1. / (2 * np.sqrt(2) * erfinv(0.5))

    sigmaG1 = sigmaG(a, axis=axis)
    q25, q75 = np.percentile(a, [25, 75], axis=axis)
    sigmaG2 = factor * (q75 - q25)

    assert_array_almost_equal(sigmaG1, sigmaG2)
示例#4
0
def create_histogram(filename, xdata, tot_events, THRESH, RATE, data=[]):
    '''
  Takes in the column data from a .out hit file
  and sets the histogram properties of it.
  '''

    #Filename convention: particle_C3F8_LABEL
    #Look behind for C3F8_ and ahead for . but don't include
    filename_convention = r"(?<=C3F8_)[\w]+(?=.)"
    file_label = re.search(filename_convention, filename).group()

    #Add statistics to label
    total, mean, threshold_count = get_statistics(xdata, THRESH, data)
    bubble_rate = calculate_bubble_rates(xdata, tot_events, THRESH, RATE,
                                         False, data)
    #file_label += #"\nNum_hits: " + str(int(round(total))) + \
    #"\nMean (keV): " + str(round(mean, 2)) + \
    #"\nHits above threshold: " + str(int(round(threshold_count))) + \
    file_label += "\nBubble rate (n/Hr): " + str(round(bubble_rate, 2))

    #Now that calulations are done, cut to threshold energy
    trimmed_xdata = trim_threshold(xdata, THRESH)

    #Bins for trimmed data
    q25 = np.percentile(trimmed_xdata, 25)
    q75 = np.percentile(trimmed_xdata, 75)
    SigmaG = astroMLstats.sigmaG(trimmed_xdata)
    binsize = 2.7 * SigmaG / (tot_events**(1. / 3))
    bins = np.append(
        np.arange(
            start=THRESH,  #trimmed_xdata.min(), 
            stop=trimmed_xdata.max(),
            step=binsize),
        trimmed_xdata.max())
    bins = np.append(0., bins)

    n, _, _ = plt.hist(x=xdata,
                       bins=bins,
                       density=False,
                       histtype="step",
                       label=file_label)
    #fancyhist(xdata, bins = "scott", density = False, histtype = "step", label = file_label)

    return n
示例#5
0
def procesar(fichero):
    # Abrimos el fichero
    f = fits.open(fichero)
    # Obtenemos la matriz con los datos
    im = f[0].data

    # Calculamos la señal ruido del orden 42, correspondiente a 5500 Angstrom
    # Utilizaremos el rango de píxeles entre 1500 y 1700, puesto que en este rango solo hay continuo
    # Haremos el cociente de la mediana de los datos entre la desviación típica
    snr = np.median(im[42, 1500:1700]) / sigmaG(im[42, 1500:1700])

    # Obtenemos el tiempo de exposicion
    exptime = np.float(f[0].header["EXPTIME"])

    # Obtenemos el día juliano y lo pasamos a entero
    date = f[0].header["DATE"]
    dt = parser.parse(date)
    time = astropy.time.Time(dt)
    juldate = time.jd

    # Dividimos el tiempo de exposicion entre 10 para hallar la relación Señal-Ruido/Tiempo-exposicion
    time_exp10 = exptime / 10

    # Calculamos snr/time_exp10
    snr_time = snr / time_exp10

    # Obtenemos el nombre del objeto observado
    name = f[0].header["OBJECT"]

    # Escribimos en el fichero de registro
    if os.path.exists(LOG_SNR):
        file = open(LOG_SNR, "a")
    else:
        file = open(LOG_SNR, "w")
        file.write("@juldate,snr/exptime,object\n")
    # Comprobamos que ese mismo fichero no se haya procesado anteriormente, para ello comparamos con el dia juliano
    if not existeNoche(str(round(juldate, 6))):
        file.write(
            str(round(juldate, 6)) + "," + str(round(snr_time, 4)) + "," +
            name + "\n")
    file.close()
示例#6
0
def Plot1night(night):
    #Directorio de trabajo y numero de ficheros
    DIR = './Rut01_dat'
    nfiles = len(glob.glob('./Rut01_dat/*' + night + '.spot'))
    #Inicializamos algunas variables
    XX = np.zeros((nfiles, 199))
    YY = np.zeros((nfiles, 199))
    dX = np.zeros((nfiles, 199))
    dY = np.zeros((nfiles, 199))
    IN = np.zeros((nfiles, 199))
    JD = np.zeros((nfiles, 199))
    #Leemos todos los ficheros creados para cada arco y los almacenamos en las matrices correspondientes
    ii = 0
    for file in glob.glob('./Rut01_dat/*' + night + '.spot'):
        colnames = ('IdSpot', 'posX', 'posY', 'distX', 'distY', 'Intensidad',
                    'jd')
        table = ascii.read(file, format='csv', names=colnames, comment='@')
        jda = np.array(table["jd"])
        x = np.array(table["posX"])
        y = np.array(table["posY"])
        dx = np.array(table["distX"])
        dy = np.array(table["distY"])
        I = np.array(table["Intensidad"])
        if ii == 0: today = np.floor(jda[0])
        XX[ii, :] = x
        YY[ii, :] = y
        dX[ii, :] = dx
        dY[ii, :] = dy
        IN[ii, :] = I
        JD[ii, :] = jda - today
        ii = ii + 1

# Calculamos los offsets de cada spot respecto a la mediana de ese spot en todos los arcos de la noche
    nXX = np.zeros((nfiles, 199))
    nYY = np.zeros((nfiles, 199))
    nIN = np.zeros((nfiles, 199))
    for i in range(199):
        nXX[:,
            i] = (XX[:, i] - np.median(XX[:, i]))  #*0.037517/5500. * 299792458
        nYY[:,
            i] = (YY[:, i] - np.median(YY[:, i]))  #*0.037517/5500. * 299792458
        nIN[:, i] = IN[:, i] / np.mean(IN[:, i])

    # Inicializamos el plot
    plt.figure(figsize=(12, 7))
    gs = gridspec.GridSpec(3, 1)
    gs.update(left=0.08,
              right=0.95,
              bottom=0.08,
              top=0.93,
              wspace=0.2,
              hspace=0.1)

    # Plot para los offsets relativos en la dirección X
    ax = plt.subplot(gs[0, 0])
    ax.set_ylabel(r'$\Delta x$ (mpix)')
    ax.get_xaxis().set_ticks([])
    ax.set_ylim([-50, 55])
    ax.set_xlim([np.min(JD) * 24. - 0.2, np.max(JD) * 24. + 0.2])
    for i in range(199):
        Xplot = (XX[:, i] - np.median(XX[:, i])) * 1.e3
        plt.plot((JD[:, i]) * 24.,
                 Xplot,
                 '+',
                 c='Silver',
                 zorder=-1,
                 alpha=0.6)
    for i in range(nfiles):
        Xplot = nXX[i, :] * 1.e3
        plt.errorbar((JD[i, 0]) * 24.,
                     np.median(Xplot),
                     yerr=sigmaG(Xplot),
                     fmt='o',
                     c='b',
                     zorder=1)

    # Plot para los offsets relativos en la dirección Y
    ax = plt.subplot(gs[1, 0])
    ax.set_ylabel(r'$\Delta y$ (mpix)')
    ax.get_xaxis().set_ticks([])
    ax.set_ylim([-50, 50])
    ax.set_xlim([np.min(JD) * 24. - 0.2, np.max(JD) * 24. + 0.2])
    for i in range(199):
        Xplot = (YY[:, i] - np.median(YY[:, i])) * 1.e3
        plt.plot((JD[:, i]) * 24.,
                 Xplot,
                 '+',
                 c='Silver',
                 zorder=-1,
                 alpha=0.6)
    for i in range(nfiles):
        Xplot = nYY[i, :] * 1.e3
        plt.errorbar((JD[i, 0]) * 24.,
                     np.median(Xplot),
                     yerr=sigmaG(Xplot),
                     fmt='o',
                     c='r',
                     zorder=1)
    # Plot para la intensidad
    ax = plt.subplot(gs[2, 0])
    ax.set_ylabel('Norm. Intensity')
    ax.set_xlabel('JD-2457594 (h)')
    ax.set_ylim([0.95, 1.02])
    ax.set_xlim([np.min(JD) * 24. - 0.2, np.max(JD) * 24. + 0.2])
    for i in range(199):
        plt.plot((JD[:, i]) * 24.,
                 nIN[:, i],
                 '+',
                 c='Silver',
                 zorder=-1,
                 alpha=0.6)
    for i in range(nfiles):
        plt.errorbar((JD[i, 0]) * 24.,
                     np.median(nIN[i, :]),
                     yerr=sigmaG(nIN[i, :]),
                     fmt='o',
                     c='forestgreen',
                     zorder=1)

    plt.savefig("./Rut01_dat/Rutina01_plot_1night_" + night[0:6] + ".pdf")
示例#7
0
def start():
	direktorij=output_folder.get()	
	if not os.path.exists(direktorij):
	   		 os.makedirs(direktorij)
	finishing_string='Name & Mean & Median\\\\ \n'
	starting_list=['Name','Mean','Median']
	finishing_list=[]
	f.seek(0)
	textval=[a.get() for a in txtv]
	textu=[a.get() for a in txtu]
	textl=[a.get() for a in txtl]
	labele=OrderedDict([(textval[j],j) for j in range(len(textval)) if(len(textval[j])!=0)])
	labeleu=OrderedDict([(textval[j],float(textu[j])) for j in range(len(textval)) if((len(textu[j])!=0) and (len(textval[j])!=0))])
	labelel=OrderedDict([(textval[j],float(textl[j])) for j in range(len(textval)) if((len(textl[j])!=0) and (len(textval[j])!=0))])	
	X=np.array([[0. for i in range(Number_of_columns)] for j in range(Number_of_rows)])
	i=0
	for line in f:
			line0=line.strip()
			line1=line0.split()
			passing=1
			for dicts, vals in labele.items():
				if dicts in labelel:
					if(labelel[dicts]>float(line1[vals])):
						passing=0
				if dicts in labeleu:
					if(labeleu[dicts]<float(line1[vals])):
						passing=0
			if(passing==1):			
				for j in range(Number_of_columns):
					X[i][j]=float(line1[j])
				
				i=i+1
	X=X[0:i,:]
	X=np.array([[X[k][l] for l in range(Number_of_columns)] for k in range(i) ])
	fig=plt.figure(figsize=(20,15))
	count=1
	for ime, val in labele.items():
			ax=fig.add_subplot(2,3,count)
			ax.set_xlabel(ime, size=30)
			ax.hist(X[:,val], bins=50, normed=False, histtype='stepfilled',color='blue',facecolor='blue')
			ax.axvline(np.mean(X[:,val]), color='orange', linestyle='--')
			ax.axvline(np.median(X[:,val]), color='green', linestyle='--')
			ax.xaxis.major.formatter._useMathText = True
			ax.ticklabel_format(style='sci', axis='x', scilimits=(-5,5))
			text='Mean and median:\n'+str("mean$\\rightarrow$ $ {:.2uL}$\n".format(ufloat(np.mean(X[:,val]),np.std(X[:,val])))+"median$\\rightarrow$ $ {:.2uL}$".format(ufloat(np.median(X[:,val]),sigmaG(X[:,val]) ) ))
			finishing_string=finishing_string+ime+" & "+"$ {:.2uL}$".format(ufloat(np.mean(X[:,val]),np.std(X[:,val])))+" & $ {:.2uL}$".format(ufloat(np.median(X[:,val]),sigmaG(X[:,val])))+"\\\\ \n"			
			finishing_list.append([ime,"$ {:.2uL}$".format(ufloat(np.mean(X[:,val]),np.std(X[:,val])))," $ {:.2uL}$".format(ufloat(np.median(X[:,val]),sigmaG(X[:,val])))])
			ax.text(.65,.9,text,transform = ax.transAxes)
			count=count+1
	plt.tight_layout()
	plt.savefig(direktorij+'/Histogrami.png')
	plt.close()
	reportwin(starting_list,finishing_string,finishing_list)
	for names0,vals0 in labele.items():
				fig=plt.figure(figsize=(30,25))
				labele1=deepcopy(labele)

				del labele1[names0]
				labele2=deepcopy(labele1)
				nx=ceil(np.sqrt(len(labele1)*(len(labele1)-1)/2))
				ny=ceil(len(labele1)*(len(labele1)-1)/2/nx)
				#fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
				counts=1
				cmap_multicolor = plt.cm.jet
				
				for names,vals in labele1.items():
					del labele2[names]
					for names1, vals1 in labele2.items():
						N0, xedges0, yedges0 = binned_statistic_2d(X[:,vals], X[:,vals1], X[:,labele[names0]], 'mean', bins=100)
						ax=fig.add_subplot(ny,nx,counts)
						im=ax.imshow(N0.T, origin='lower',extent=[xedges0[0], xedges0[-1], yedges0[0], yedges0[-1]], aspect='auto', interpolation='nearest', cmap=cmap_multicolor)
						plt.xlim(xedges0[0], xedges0[-1])
						plt.ylim(yedges0[0], yedges0[-1])
						plt.xlabel(names, size=30)
						plt.ylabel(names1, size=30)
						ax.xaxis.major.formatter._useMathText = True
						ax.yaxis.major.formatter._useMathText = True
						ax.ticklabel_format(style='sci', axis='x', scilimits=(-5,5))
						#m_1 = np.linspace(xedges0[0], xedges0[-1], 100)
						#m_2 = np.linspace(yedges0[0], yedges0[-1], 100)

						#MX,MY = np.meshgrid(m_1, m_2)

						#Z = sigmas(MX,np.median(X[:,vals]),sigmaG(X[:,vals]), MY,np.median(X[:,vals1]),sigmaG(X[:,vals1]))

						H, xbins, ybins = np.histogram2d(X[:,vals], X[:,vals1],bins=100)

						Nsigma = convert_to_stdev(np.log(H))
						cont=plt.contour(0.5 * (xbins[1:] + xbins[:-1]),0.5 * (ybins[1:] + ybins[:-1]),Nsigma.T,levels=[0.6827,0.6827,0.9545, 0.9545], colors=['.25','.25','0.5','0.5'],linewidths=2)					
						counts=counts+1
				
				cmap_multicolor.set_bad('w', 1.)
				fig.subplots_adjust(bottom=0.1)
				cbar_ax = fig.add_axes([0.1, 0.05, 0.8, 0.025])
				cb=fig.colorbar(im, cax=cbar_ax, format=r'$%.1f$',orientation='horizontal')
				cb.set_label(str('$\\langle '+names0.replace('$','')+'\\rangle $'), size=30)
				
				plt.savefig(direktorij+'/'+''.join([i for i in names0 if (i.isalpha() or i.isdigit())])+'.png',bbox_inches='tight')
				plt.close()
示例#8
0
def limites(y):
    median_setlim = np.median(y)
    error_setlim = sigmaG(y)
    lim_sup = median_setlim + 5. * error_setlim
    lim_inf = median_setlim - 5. * error_setlim
    return lim_sup, lim_inf
示例#9
0
for data, label, ls in zip((X, Y, X_sample), labels, linestyles):
    g = data[:, 0]
    gr = data[:, 2]
    ri = data[:, 3]

    r = g - gr
    i = r - ri

    mask = (gr > 0.3) & (gr < 1.0)
    g = g[mask]
    r = r[mask]
    i = i[mask]

    w = -0.227 * g + 0.792 * r - 0.567 * i + 0.05

    sigma = sigmaG(w)

    ax.hist(w, bins=np.linspace(-0.08, 0.08, 100), linestyle=ls,
            histtype='step', label=label + '\n\t' + r'$\sigma_G=%.3f$' % sigma,
            normed=True)

ax.legend(loc=2)
ax.text(0.95, 0.95, '$w = -0.227g + 0.792r$\n$ - 0.567i + 0.05$',
        transform=ax.transAxes, ha='right', va='top', size=14)

ax.set_xlim(-0.07, 0.07)
ax.set_ylim(0, 55)

ax.set_xlabel('$w$')
ax.set_ylabel('$N(w)$')
示例#10
0
for data, label, ls in zip((X, Y, X_sample), labels, linestyles):
    g = data[:, 0]
    gr = data[:, 2]
    ri = data[:, 3]

    r = g - gr
    i = r - ri

    mask = (gr > 0.3) & (gr < 1.0)
    g = g[mask]
    r = r[mask]
    i = i[mask]

    w = -0.227 * g + 0.792 * r - 0.567 * i + 0.05

    sigma = sigmaG(w)

    ax.hist(w,
            bins=np.linspace(-0.08, 0.08, 100),
            linestyle=ls,
            histtype='step',
            label=label + '\n\t' + r'$\sigma_G=%.3f$' % sigma,
            normed=True)

ax.legend(loc=2)
ax.text(0.95,
        0.95,
        '$w = -0.227g + 0.792r$\n$ - 0.567i + 0.05$',
        transform=ax.transAxes,
        ha='right',
        va='top')
示例#11
0
def runRutina04(directorio):
    # Abrimos el fichero con el listado de ficheros bias
    infile = open(FICH_BIAS, 'r')
    # Abrimos el fichero donde escribiremos los resultados
    outfile = open("./Rut04_dat/nivel_bias_" + directorio + ".txt", "w")
    outfile.write(
        "@fichero, bias_medio, bias_mediana, bias_desvTipica, dia_juliano\n")
    # Variable para almacenar todos los valores de todos los bias de una noche
    biasNoche = []
    # Procesamos cada una de las lineas del fichero
    for line in infile:
        #Eliminamos de la linea el retorno de carro (\n)
        line = line.strip()
        #Comprobamos que la linea tenga información y no sea una linea en blanco
        if len(line) > 0:
            # Abrimos el fichero de bias
            hdulist = fits.open(line)
            #Obtenemos la matriz con los datos
            tbdata = hdulist[0].data
            #Obtenemos el dia juliano del bias
            date = hdulist[0].header["DATE"]
            dt = parser.parse(date)
            time = astropy.time.Time(dt)
            juldate = time.jd
            #cerramos el fichero
            hdulist.close()
            nombre = line[line.index("/") + 1:]
            media = np.mean(tbdata)
            mediana = np.median(tbdata)
            desviacion = sigmaG(tbdata)
            biasNoche.append(tbdata)
            outfile.write(nombre + "," + str(round(media, 4)) + "," +
                          str(mediana) + "," + str(round(desviacion, 4)) +
                          "," + str(round(juldate, 6)) + "\n")
    outfile.close()
    infile.close()

    # Añadimos el valor de la mediana de todos los bias de la noche al fichero master
    # Si existe el fichero lo abrimos en modo "a", sino lo creamos
    if os.path.exists(FICH_MASTER):
        file = open(FICH_MASTER, "a")
    else:
        file = open(FICH_MASTER, "w")
        file.write("@juldate,bias_mediana,bias_medio,bias_desvTipica\n")
    mediana_total = np.median(biasNoche)
    media_total = np.mean(biasNoche)
    desvTipica_total = sigmaG(biasNoche)
    #Comprobamos que la entrada en el fichero no exista. En caso de no existir escribimos nueva entrada
    if not existeNoche(np.int(juldate)):
        file.write(
            str(np.int(juldate)) + "," + str(round(mediana_total, 4)) + "," +
            str(round(media_total, 4)) + "," +
            str(round(desvTipica_total, 4)) + "\n")
    file.close()
    # Realizamos el checkeo de valores umbrales.
    # Si el bias medio está entre 810 y 830 es correcto, y si el ruido de lectura es menor que 6 será también correcto.
    if media_total >= 810 and media_total <= 830:
        print "... Nivel BIAS medio: %.2f ADUs ... OK" % (media_total)
    else:
        print "... Nivel BIAS medio: %.2f ADUs ... NO OK! - CHECK" % (
            media_total)
    if desvTipica_total < 6:
        print "... Ruido de lectura medio: %.2f ADUs ... OK" % (
            desvTipica_total)
    else:
        print "... Ruido de lectura medio: %.2f ADUs ... NO OK! - CHECK" % (
            desvTipica_total)
示例#12
0
def plot_cdf(data=None,
 showplots=False, filename="", 
 xlabel=None, plotlabel=""):
  
  t0=time.time()

  ax=plt.figure(num=None, figsize=(10.0, 10.0))

  # determine cumulative frequency distribution by sorting values
  # this is faster than the percentile function
  ndata=len(data)
  index=np.argsort(data, axis=None)
  median=data[index[int(ndata/2.0)]]
  sigma_mad=mymad(data, median=median, sigma=True)
  min=data[index[0]]
  max=data[index[-1]]

  ndata, (dmin, dmax), mean, variance, skewness, kurtosis = \
         stats.describe(data, axis=None)

  sigma=math.sqrt(variance)


  print('min, max, mean, sigma, median, sigma_mad: ')
  print(min, max, mean, sigma, median, sigma_mad)
  sigmaIQ=aml.sigmaG(data)
  print('sigmaIQ: ', aml.sigmaG(data))
  print('Elapsed time(secs): ',time.time() - t0)

  q10, q90 = np.percentile(data, [10.0, 90.0])
  sigma80= (q90-q10) * 0.5000* 0.7803
  print(q10, q90)
  print('sigma80: ', sigma80)

  q25, q50, q75 = np.percentile(data, [25.0, 50.0, 75.0])
  print(q25, q50, q75)

  step_pc=ndata/100.0
  ipc=50.0
  ipoint_pc=ipc*step_pc
  print('median: ', int(ipoint_pc), index[int(ipoint_pc)])
  print('median: ', data[index[int(ipoint_pc)]])
  print('Elapsed time(secs): ',time.time() - t0)
  
  range=np.linspace(0.0,100.0,101)
  #print 'range: ', range
  
  dist=np.zeros(101)
  i=-1
  for pc in range:
    i=i+1
    dist[i]=mypercentile(data, pc, index, verbose=True, debug=False)
  print('Elapsed time(secs): ',time.time() - t0)
    
  plotcdf=True
  if plotcdf:
    xdata=dist
    ydata=range/100.0
    #title=filename + '[' + str(ext) + ']'
    title=filename + ': ' + plotlabel
    ylabel='Cumulative frequency'

    plt.plot(xdata, ydata, 'k', color='black', markersize=1)
    plt.xlim([median-(5.0*sigma_mad),median+(5.0*sigma_mad)])
    plt.title(title)
    if xlabel != None: plt.xlabel(xlabel)
    plt.ylabel(ylabel)

    # Compute the CDF; need to check that cdf is not off by one step via
    # reversing the cdf by hand to a pdf, by eye I see an offset when the 
    # nsteps=100 but it is not visible for nsteps=1000 so it looks like the
    # pdf and/or cdf is shofted by 1 step 
    nsteps=1000
    xmin=median-(5.0*sigma_mad)
    xmax=median+(5.0*sigma_mad)
    xrange=10.0*sigma_mad
    # use nsteps+1 so that there is a value at the midpt
    x = np.linspace(xmin,xmax,nsteps+1)

    pdf=mlab.normpdf(x,median,sigma_mad)

    dx=xrange/nsteps
    cdf = np.cumsum(pdf*dx)
    plt.plot(x,cdf)

    pdf=mlab.normpdf(x,median,sigmaIQ)
    dx=xrange/nsteps
    cdf = np.cumsum(pdf*dx)
    plt.plot(x,cdf,color='green')

    pdf=mlab.normpdf(x,median,sigma80)
    dx=xrange/nsteps
    cdf = np.cumsum(pdf*dx)
    plt.plot(x,cdf,color='red')

    basename=os.path.basename(filename)
    ext=""
    plt.savefig(basename + '_' + str(ext) + plotlabel + '_cdf.png')

    if showplots: plt.show()

    plt.close()
示例#13
0
def plot_band(data=None, colname=None, color=None, 
 normpdf=False, xlimit_min=None, xlimit_max=None, xscale=None,
 xlabel=None, filename=None):

  global t0

  if color == None: color='k'

  # determine cumulative frequency distribution by sorting values
  # this is faster than the percentile function
  ndata=len(data)
  index=np.argsort(data, axis=None)
  median=data[index[int(ndata/2.0)]]
  sigma_mad=mymad(data, median=median, sigma=True)
  min=data[index[0]]
  max=data[index[-1]]

  ndata, (dmin, dmax), mean, variance, skewness, kurtosis = \
         stats.describe(data, axis=None)

  sigma=math.sqrt(variance)


  print('min, max, mean, sigma, median, sigma_mad: ')
  print(min, max, mean, sigma, median, sigma_mad)
  sigmaIQ=aml.sigmaG(data)
  print('sigmaIQ: ', aml.sigmaG(data))
  print('Elapsed time(secs): ',time.time() - t0)

  q10, q90 = np.percentile(data, [10.0, 90.0])
  sigma80= (q90-q10) * 0.5000* 0.7803
  print(q10, q90)
  print('sigma80: ', sigma80)

  q25, q50, q75 = np.percentile(data, [25.0, 50.0, 75.0])
  print(q25, q50, q75)

  step_pc=ndata/100.0
  ipc=50.0
  ipoint_pc=ipc*step_pc
  print('median: ', int(ipoint_pc), index[int(ipoint_pc)])
  print('median: ', data[index[int(ipoint_pc)]])
  print('Elapsed time(secs): ',time.time() - t0)
  
  range=np.linspace(0.0,100.0,101)
  #print 'range: ', range
  
  dist=np.zeros(101)
  i=-1
  for pc in range:
    i=i+1
    dist[i]=mypercentile(data, pc, index, verbose=True, debug=False)
  print('Elapsed time(secs): ',time.time() - t0)
    
  plotcdf=True
  if plotcdf:
    xdata=dist
    ydata=range/100.0
    #title=filename + '[' + str(ext) + ']'
    title=filename
    ylabel='Cumulative frequency'

    plt.plot(xdata, ydata, color=color, markersize=1,
     linestyle='-', linewidth=2)
    if xlimit_min == None: xlimit_min=median-(5.0*sigma_mad)
    if xlimit_max == None: xlimit_max=median+(5.0*sigma_mad)

    ax=plt.figtext(0.7, 0.4, 'plt.figtext: Hello World')
  
    print('Default font size ', ax.get_size())
    #ax.set_size(ax.get_size()*2.0)
    #print('Default font size ', ax.get_size())


    #plt.figtext(0.5, 0.5, 'Font size: ' + str(plt.get_size()))

    plt.xlim([xlimit_min, xlimit_max])
    if xscale: plt.xscale('log')

    plt.title(title)
    if xlabel != None: plt.xlabel(xlabel)
    plt.ylabel(ylabel)


    #plt.tick_params(axis='both', which='major', labelsize=10)
    #plt.tick_params(axis='both', which='minor', labelsize=8)

    #plt.xlim(plot_xlimits)

    # Compute the CDF; need to check that cdf is not off by one step via
    # reversing the cdf by hand to a pdf, by eye I see an offset when the 
    # nsteps=100 but it is not visible for nsteps=1000 so it looks like the
    # pdf and/or cdf is shofted by 1 step 
    if normpdf:
      nsteps=1000
      xmin=median-(5.0*sigma_mad)
      xmax=median+(5.0*sigma_mad)
      xrange=10.0*sigma_mad
      # use nsteps+1 so that there is a value at the midpt
      x = np.linspace(xmin,xmax,nsteps+1)

      pdf=mlab.normpdf(x,median,sigma_mad)

      dx=xrange/nsteps
      cdf = np.cumsum(pdf*dx)
      plt.plot(x,cdf)

      pdf=mlab.normpdf(x,median,sigmaIQ)
      dx=xrange/nsteps
      cdf = np.cumsum(pdf*dx)
      plt.plot(x,cdf,color='green')

      pdf=mlab.normpdf(x,median,sigma80)
      dx=xrange/nsteps
      cdf = np.cumsum(pdf*dx)
      plt.plot(x,cdf,color='red')