示例#1
0
 def recover(self):
     log.debug("OufileETIFile recover()")
     ad = AstroData(self.tmp_name, mode="update")
     ad.filename = self.ad_name
     ad = gemini_tools.obsmode_del(ad)
     log.fullinfo(self.tmp_name + " was loaded into memory")
     return ad
示例#2
0
 def recover(self):
     log.debug("OutAtList recover()")
     adlist = []
     for i, tmpname in enumerate(self.diskoutlist):
         ad = AstroData(tmpname, mode="update")
         ad.filename = self.ad_name[i]
         ad = gemini_tools.obsmode_del(ad)
         adlist.append(ad)
         log.fullinfo(tmpname + " was loaded into memory")
     return adlist
示例#3
0
 def recover(self):
     log.debug("OutAtList recover()")
     adlist = []
     for i, tmpname in enumerate(self.diskoutlist):
         ad = AstroData(tmpname, mode="update")
         ad.filename = self.ad_name[i]
         ad = gemini_tools.obsmode_del(ad)
         # Read the database back in, if it exists
         try:
             ad = gemini_tools.read_database(
                 ad, database_name=self.database_name, 
                 input_name=self.tmpin_name[i], 
                 output_name=ad.phu_get_key_value("ORIGNAME"))
         except:
             pass
         adlist.append(ad)
         log.fullinfo(tmpname + " was loaded into memory")
     return adlist
示例#4
0
def test_attr_filename_2():
    """ setter """
    ad = AstroData(TESTFILE)
    ad.filename = "FOO.fits"
    assert ad.filename == "FOO.fits"
    def _calculate_var(self, adinput=None, add_read_noise=False,
                       add_poisson_noise=False):
        """
        The _calculate_var helper function is used to calculate the variance
        and add a variance extension to the single input AstroData object.
        
        """
        # Instantiate the log
        log = logutils.get_logger(__name__)
        
        # Get the gain and the read noise using the appropriate descriptors.
        gain_dv = adinput.gain()
        read_noise_dv = adinput.read_noise()

        # Only check read_noise here as gain descriptor is only used if units
        # are in ADU
        if read_noise_dv.is_none() and add_read_noise:
            # The descriptor functions return None if a value cannot be found
            # and stores the exception info. Re-raise the exception.
            if hasattr(adinput, "exception_info"):
                raise adinput.exception_info
            else:
                raise Errors.InputError("read_noise descriptor "
                                        "returned None...\n%s"
                                        % (read_noise_dv.info()))
            
        # Set the data type of the final variance array
        var_dtype = np.dtype(np.float32)
        
        # Loop over the science extensions in the dataset
        for ext in adinput[SCI]:
            extver = ext.extver()
            bunit  = ext.get_key_value("BUNIT")

            if bunit == "adu":
                # Get the gain value using the appropriate descriptor. The gain
                # is only used if the units are in ADU. Raise if gain is None
                gain = gain_dv.get_value(extver=extver)
                if gain is not None:
                    log.fullinfo("Gain for %s[%s,%d] = %f"
                                 % (adinput.filename, SCI, extver, gain))
                elif add_read_noise or add_poisson_noise:
                    err_msg = ("Gain for %s[%s,%d] is None. Cannot calculate "
                                "variance properly. Setting to zero."
                                % (adinput.filename, SCI, extver))
                    raise Errors.InputError(err_msg)
                
                units = "ADU"
            elif bunit == "electron" or bunit == "electrons":
                units = "electrons"
            else:
                # Perhaps something more sensible should be done here?
                raise Errors.InputError("No units found. Not calculating "
                                        "variance.")
            
            if add_read_noise:
                # Get the read noise value (in units of electrons) using the
                # appropriate descriptor. The read noise is only used if
                # add_read_noise is True
                read_noise = read_noise_dv.get_value(extver=extver)
                if read_noise is not None:
                    log.fullinfo("Read noise for %s[%s,%d] = %f"
                                 % (adinput.filename, SCI, extver, read_noise))
                    
                    # Determine the variance value to use when calculating the
                    # read noise component of the variance.
                    read_noise_var_value = read_noise
                    if units == "ADU":
                        read_noise_var_value = read_noise / gain
                    
                    # Add the read noise component of the variance to a zeros
                    # array that is the same size as the pixel data in the
                    # science extension
                    log.fullinfo("Calculating the read noise component of the "
                                 "variance in %s" % units)
                    var_array_rn = np.add(
                      np.zeros(ext.data.shape), (read_noise_var_value)**2)
                else:
                    logwarning("Read noise for %s[%s,%d] is None. Setting to "
                               "zero" % (adinput.filename, SCI, extver))
                    var_array_rn = np.zeros(ext.data.shape)
                    
            if add_poisson_noise:
                # Determine the variance value to use when calculating the
                # poisson noise component of the variance
                poisson_noise_var_value = ext.data
                if units == "ADU":
                    poisson_noise_var_value = ext.data / gain
                
                # Calculate the poisson noise component of the variance. Set
                # pixels that are less than or equal to zero to zero.
                log.fullinfo("Calculating the poisson noise component of "
                             "the variance in %s" % units)
                var_array_pn = np.where(
                  ext.data > 0, poisson_noise_var_value, 0)
            
            # Create the final variance array
            if add_read_noise and add_poisson_noise:
                var_array_final = np.add(var_array_rn, var_array_pn)
            
            if add_read_noise and not add_poisson_noise:
                var_array_final = var_array_rn
            
            if not add_read_noise and add_poisson_noise:
                var_array_final = var_array_pn
            
            var_array_final = var_array_final.astype(var_dtype)
            
            # If the read noise component and the poisson noise component are
            # calculated and added separately, then a variance extension will
            # already exist in the input AstroData object. In this case, just
            # add this new array to the current variance extension
            if adinput[VAR, extver]:
                
                # If both the read noise component and the poisson noise
                # component have been calculated, don't add to the variance
                # extension
                if add_read_noise and add_poisson_noise:
                    raise Errors.InputError(
                        "Cannot add read noise component and poisson noise "
                        "component to variance extension as the variance "
                        "extension already exists")
                else:
                    log.fullinfo("Combining the newly calculated variance "
                                 "with the current variance extension "
                                 "%s[%s,%d]" % (adinput.filename, VAR, extver))
                    adinput[VAR, extver].data = np.add(
                      adinput[VAR, extver].data,
                      var_array_final).astype(var_dtype)
            else:
                # Create the variance AstroData object
                var = AstroData(data=var_array_final)
                var.rename_ext(VAR, ver=extver)
                var.filename = adinput.filename
                
                # Call the _update_var_header helper function to update the
                # header of the variance extension with some useful keywords
                var = self._update_var_header(sci=ext, var=var, bunit=bunit)
                
                # Append the variance AstroData object to the input AstroData
                # object. 
                log.fullinfo("Adding the [%s,%d] extension to the input "
                             "AstroData object %s" % (VAR, extver,
                                                      adinput.filename))
                adinput.append(moredata=var)
        
        return adinput
    def addDQ(self, rc):
        """
        This primitive is used to add a DQ extension to the input AstroData
        object. The value of a pixel in the DQ extension will be the sum of the
        following: (0=good, 1=bad pixel (found in bad pixel mask), 2=pixel is
        in the non-linear regime, 4=pixel is saturated). This primitive will
        trim the BPM to match the input AstroData object(s).
        
        :param bpm: The file name, including the full path, of the BPM(s) to be
                    used to flag bad pixels in the DQ extension. If only one
                    BPM is provided, that BPM will be used to flag bad pixels
                    in the DQ extension for all input AstroData object(s). If
                    more than one BPM is provided, the number of BPMs must
                    match the number of input AstroData objects. If no BPM is
                    provided, the primitive will attempt to determine an
                    appropriate BPM.
        :type bpm: string or list of strings
        """
        # Instantiate the log
        log = logutils.get_logger(__name__)
        
        # Log the standard "starting primitive" debug message
        log.debug(gt.log_message("primitive", "addDQ", "starting"))
        
        # Define the keyword to be used for the time stamp for this primitive
        timestamp_key = self.timestamp_keys["addDQ"]
        
        # Initialize the list of output AstroData objects
        adoutput_list = []
        
        # Set the data type of the data quality array
        # It can be uint8 for now, it will get converted up as we assign higher bit values
        # shouldn't need to force it up to 16bpp yet.
        dq_dtype = np.dtype(np.uint8)
        #dq_dtype = np.dtype(np.uint16)
        
        # Get the input AstroData objects
        adinput = rc.get_inputs_as_astrodata()
        
        # Loop over each input AstroData object in the input list
        for ad in adinput:
            
            # Check whether the addDQ primitive has been run previously
            if ad.phu_get_key_value(timestamp_key):
                log.warning("No changes will be made to %s, since it has "
                            "already been processed by addDQ" % ad.filename)
                
                # Append the input AstroData object to the list of output
                # AstroData objects without further processing
                adoutput_list.append(ad)
                continue
            
            # Parameters specified on the command line to reduce are converted
            # to strings, including None
            ##M What about if a user doesn't want to add a BPM at all?
            ##M Are None's not converted to Nonetype from the command line?
            if rc["bpm"] and rc["bpm"] != "None":
                # The user supplied an input to the bpm parameter
                bpm = rc["bpm"]
            else:
                # The user did not supply an input to the bpm parameter, so try
                # to find an appropriate one. Get the dictionary containing the
                # list of BPMs for all instruments and modes.
                all_bpm_dict = Lookups.get_lookup_table("Gemini/BPMDict",
                                                        "bpm_dict")
                
                # Call the _get_bpm_key helper function to get the key for the
                # lookup table 
                key = self._get_bpm_key(ad)
                
                # Get the appropriate BPM from the look up table
                if key in all_bpm_dict:
                    bpm = lookup_path(all_bpm_dict[key])
                else:
                    bpm = None
                    log.warning("No BPM found for %s, no BPM will be "
                                "included" % ad.filename)

            # Ensure that the BPMs are AstroData objects
            bpm_ad = None
            if bpm is not None:
                log.fullinfo("Using %s as BPM" % str(bpm))
                if isinstance(bpm, AstroData):
                    bpm_ad = bpm
                else:
                    bpm_ad = AstroData(bpm)
                    ##M Do we want to fail here depending on context?
                    if bpm_ad is None:
                        log.warning("Cannot convert %s into an AstroData "
                                    "object, no BPM will be added" % bpm)

            final_bpm = None
            if bpm_ad is not None:
                # Clip the BPM data to match the size of the input AstroData
                # object science and pad with overscan region, if necessary
                final_bpm = gt.clip_auxiliary_data(adinput=ad, aux=bpm_ad,
                                                   aux_type="bpm")[0]

            # Get the non-linear level and the saturation level using the
            # appropriate descriptors - Individual values get checked in the
            # next loop 
            non_linear_level_dv = ad.non_linear_level()
            saturation_level_dv = ad.saturation_level()

            # Loop over each science extension in each input AstroData object
            for ext in ad[SCI]:
                
                # Retrieve the extension number for this extension
                extver = ext.extver()
                
                # Check whether an extension with the same name as the DQ
                # AstroData object already exists in the input AstroData object
                if ad[DQ, extver]:
                    log.warning("A [%s,%d] extension already exists in %s"
                                % (DQ, extver, ad.filename))
                    continue
                
                # Get the non-linear level and the saturation level for this
                # extension
                non_linear_level = non_linear_level_dv.get_value(extver=extver)
                saturation_level = saturation_level_dv.get_value(extver=extver)

                # To store individual arrays created for each of the DQ bit
                # types
                dq_bit_arrays = []

                # Create an array that contains pixels that have a value of 2
                # when that pixel is in the non-linear regime in the input
                # science extension
                if non_linear_level is not None:
                    non_linear_array = None
                    if saturation_level is not None:
                        # Test the saturation level against non_linear level
                        # They can be the same or the saturation level can be
                        # greater than but not less than the non-linear level.
                        # If they are the same then only flag saturated pixels
                        # below. This just means not creating an unneccessary
                        # intermediate array.
                        if saturation_level > non_linear_level:
                            log.fullinfo("Flagging pixels in the DQ extension "
                                         "corresponding to non linear pixels "
                                         "in %s[%s,%d] using non linear "
                                         "level = %.2f" % (ad.filename, SCI,
                                                           extver,
                                                           non_linear_level))

                            non_linear_array = np.where(
                                ((ext.data >= non_linear_level) &
                                (ext.data < saturation_level)), 2, 0)
                            
                        elif saturation_level < non_linear_level:
                            log.warning("%s[%s,%d] saturation_level value is"
                                        "less than the non_linear_level not"
                                        "flagging non linear pixels" %
                                        (ad.filname, SCI, extver))
                        else:
                            log.fullinfo("Saturation and non-linear values "
                                         "for %s[%s,%d] are the same. Only "
                                         "flagging saturated pixels."
                                         % (ad.filename, SCI, extver))
                            
                    else:
                        log.fullinfo("Flagging pixels in the DQ extension "
                                     "corresponding to non linear pixels "
                                     "in %s[%s,%d] using non linear "
                                     "level = %.2f" % (ad.filename, SCI, extver,
                                                       non_linear_level))

                        non_linear_array = np.where(
                            (ext.data >= non_linear_level), 2, 0)
                    
                    dq_bit_arrays.append(non_linear_array)

                # Create an array that contains pixels that have a value of 4
                # when that pixel is saturated in the input science extension
                if saturation_level is not None:
                    saturation_array = None
                    log.fullinfo("Flagging pixels in the DQ extension "
                                 "corresponding to saturated pixels in "
                                 "%s[%s,%d] using saturation level = %.2f" %
                                 (ad.filename, SCI, extver, saturation_level))
                    saturation_array = np.where(
                        ext.data >= saturation_level, 4, 0)
                    dq_bit_arrays.append(saturation_array)
                
                # BPMs have an EXTNAME equal to DQ
                bpmname = None
                if final_bpm is not None:
                    bpm_array = None
                    bpmname = os.path.basename(final_bpm.filename)
                    log.fullinfo("Flagging pixels in the DQ extension "
                                 "corresponding to bad pixels in %s[%s,%d] "
                                 "using the BPM %s[%s,%d]" %
                                 (ad.filename, SCI, extver, bpmname, DQ, extver))
                    bpm_array = final_bpm[DQ, extver].data
                    dq_bit_arrays.append(bpm_array)
                
                # Create a single DQ extension from the three arrays (BPM,
                # non-linear and saturated)
                if not dq_bit_arrays:
                    # The BPM, non-linear and saturated arrays were not
                    # created. Create a single DQ array with all pixels set
                    # equal to 0 
                    log.fullinfo("The BPM, non-linear and saturated arrays "
                                 "were not created. Creating a single DQ "
                                 "array with all the pixels set equal to zero")
                    final_dq_array = np.zeros(ext.data.shape).astype(dq_dtype)

                else:
                    final_dq_array = self._bitwise_OR_list(dq_bit_arrays)
                    final_dq_array = final_dq_array.astype(dq_dtype)
                
                # Create a data quality AstroData object
                dq = AstroData(data=final_dq_array)
                dq.rename_ext(DQ, ver=extver)
                dq.filename = ad.filename
                
                # Call the _update_dq_header helper function to update the
                # header of the data quality extension with some useful
                # keywords
                dq = self._update_dq_header(sci=ext, dq=dq, bpmname=bpmname)
                
                # Append the DQ AstroData object to the input AstroData object
                log.fullinfo("Adding extension [%s,%d] to %s"
                             % (DQ, extver, ad.filename))
                ad.append(moredata=dq)
            
            # Add the appropriate time stamps to the PHU
            gt.mark_history(adinput=ad, keyword=timestamp_key)
            
            # Change the filename
            ad.filename = gt.filename_updater(adinput=ad, suffix=rc["suffix"],
                                              strip=True)
            
            # Append the output AstroData object to the list of output
            # AstroData objects
            adoutput_list.append(ad)

        # Report the list of output AstroData objects to the reduction context
        rc.report_output(adoutput_list)
        
        yield rc
    def makeFringeFrame(self,rc):

        # Instantiate the log
        log = gemLog.getGeminiLog(logType=rc["logType"],
                                  logLevel=rc["logLevel"])

        # Log the standard "starting primitive" debug message
        log.debug(gt.log_message("primitive", "makeFringeFrame", 
                                 "starting"))

        # Initialize the list of output AstroData objects
        adoutput_list = []

        # Check for at least 3 input frames
        adinput = rc.get_inputs_as_astrodata()
        if len(adinput)<3:
            log.stdinfo('Fewer than 3 frames provided as input. ' +
                        'Not making fringe frame.')

            # Report the empty list to the reduction context
            rc.report_output(adoutput_list)
        
        else:
            rc.run("correctBackgroundToReferenceImage"\
                       "(remove_zero_level=True)")

            # If needed, do a rough median on all frames, subtract,
            # and then redetect to help distinguish sources from fringes
            sub_med = rc["subtract_median_image"]
            if sub_med:
                adinput = rc.get_inputs_as_astrodata()

                # Get data by science extension
                data = {}
                for ad in adinput:
                    for sciext in ad["SCI"]:
                        key = (sciext.extname(),sciext.extver())
                        if data.has_key(key):
                            data[key].append(sciext.data)
                        else:
                            data[key] = [sciext.data]


                # Make a median image for each extension
                import pyfits as pf
                median_ad = AstroData()
                median_ad.filename = gt.filename_updater(
                    adinput=adinput[0], suffix="_stack_median", strip=True)
                for key in data:
                    med_data = np.median(np.dstack(data[key]),axis=2)
                    hdr = pf.Header()
                    ext = AstroData(data=med_data, header=hdr)
                    ext.rename_ext(key)
                    median_ad.append(ext)

                # Subtract the median image
                rc["operand"] = median_ad
                rc.run("subtract")

                # Redetect to get a good object mask
                rc.run("detectSources")

                # Add the median image back in to the input
                rc.run("add")

            # Add the object mask into the DQ plane
            rc.run("addObjectMaskToDQ")
            
            # Stack frames with masking from DQ plane
            rc.run("stackFrames(operation=%s)" % rc["operation"])

        yield rc
示例#8
0
def test_attr_filename_2():
    """ setter """
    ad = AstroData(TESTFILE)
    ad.filename = "FOO.fits"
    assert ad.filename == "FOO.fits"