def testGeometricLogPmf_validate_args(self):
        with self.cached_session():
            batch_size = 6
            probs = constant_op.constant([.9] * batch_size)
            x = array_ops.placeholder(dtypes.float32, shape=[6])
            feed_dict = {x: [2.5, 3.2, 4.3, 5.1, 6., 7.]}
            geom = geometric.Geometric(probs=probs, validate_args=True)

            with self.assertRaisesOpError("Condition x == y"):
                log_prob = geom.log_prob(x)
                log_prob.eval(feed_dict=feed_dict)

            with self.assertRaisesOpError("Condition x >= 0"):
                log_prob = geom.log_prob(np.array([-1.], dtype=np.float32))
                log_prob.eval()

            geom = geometric.Geometric(probs=probs)
            log_prob = geom.log_prob(x)
            self.assertEqual([
                6,
            ], log_prob.get_shape())
            pmf = geom.prob(x)
            self.assertEqual([
                6,
            ], pmf.get_shape())
    def testInvalidP(self):
        invalid_ps = [-.01, -0.01, -2.]
        with self.cached_session():
            with self.assertRaisesOpError("Condition x >= 0"):
                geom = geometric.Geometric(probs=invalid_ps,
                                           validate_args=True)
                geom.probs.eval()

        invalid_ps = [1.1, 3., 5.]
        with self.cached_session():
            with self.assertRaisesOpError("Condition x <= y"):
                geom = geometric.Geometric(probs=invalid_ps,
                                           validate_args=True)
                geom.probs.eval()
    def testGeometricSampleMultiDimensional(self):
        with self.cached_session():
            batch_size = 2
            probs_v = [.3, .9]
            probs = constant_op.constant([probs_v] * batch_size)

            geom = geometric.Geometric(probs=probs)

            n = 400000
            samples = geom.sample(n, seed=12345)
            self.assertEqual([n, batch_size, 2], samples.get_shape())

            sample_values = samples.eval()

            self.assertFalse(np.any(sample_values < 0.0))
            for i in range(2):
                self.assertAllClose(sample_values[:, 0, i].mean(),
                                    stats.geom.mean(probs_v[i], loc=-1),
                                    rtol=.02)
                self.assertAllClose(sample_values[:, 0, i].var(),
                                    stats.geom.var(probs_v[i], loc=-1),
                                    rtol=.02)
                self.assertAllClose(sample_values[:, 1, i].mean(),
                                    stats.geom.mean(probs_v[i], loc=-1),
                                    rtol=.02)
                self.assertAllClose(sample_values[:, 1, i].var(),
                                    stats.geom.var(probs_v[i], loc=-1),
                                    rtol=.02)
 def testGeometricStddev(self):
     with self.cached_session():
         probs_v = np.array([.1, .3, .25])
         geom = geometric.Geometric(probs=probs_v)
         expected_stddevs = stats.geom.std(probs_v, loc=-1)
         self.assertEqual([3], geom.stddev().get_shape())
         self.assertAllClose(geom.stddev().eval(), expected_stddevs)
 def testGeometricVariance(self):
     with self.cached_session():
         probs_v = np.array([.1, .3, .25])
         geom = geometric.Geometric(probs=probs_v)
         expected_vars = stats.geom.var(probs_v, loc=-1)
         self.assertEqual([3], geom.variance().get_shape())
         self.assertAllClose(expected_vars, geom.variance().eval())
 def testGeometricEntropy(self):
     with self.cached_session():
         probs_v = np.array([.1, .3, .25], dtype=np.float32)
         geom = geometric.Geometric(probs=probs_v)
         expected_entropy = stats.geom.entropy(probs_v, loc=-1)
         self.assertEqual([3], geom.entropy().get_shape())
         self.assertAllClose(expected_entropy, geom.entropy().eval())
 def testGeometricMode(self):
     with self.cached_session():
         probs_v = np.array([.1, .3, .25])
         geom = geometric.Geometric(probs=probs_v)
         self.assertEqual([
             3,
         ],
                          geom.mode().get_shape())
         self.assertAllClose([0.] * 3, geom.mode().eval())
    def testGeometricShape(self):
        with self.cached_session():
            probs = constant_op.constant([.1] * 5)
            geom = geometric.Geometric(probs=probs)

            self.assertEqual([
                5,
            ],
                             geom.batch_shape_tensor().eval())
            self.assertAllEqual([], geom.event_shape_tensor().eval())
            self.assertEqual(tensor_shape.TensorShape([5]), geom.batch_shape)
            self.assertEqual(tensor_shape.TensorShape([]), geom.event_shape)
    def testGeometricCDF(self):
        with self.cached_session():
            batch_size = 6
            probs = constant_op.constant([[.2, .4, .5]] * batch_size)
            probs_v = np.array([.2, .4, .5])
            x = np.array([[2., 3., 4., 5.5, 6., 7.]], dtype=np.float32).T

            geom = geometric.Geometric(probs=probs)
            expected_cdf = stats.geom.cdf(x, probs_v, loc=-1)

            cdf = geom.cdf(x)
            self.assertEqual([6, 3], cdf.get_shape())
            self.assertAllClose(expected_cdf, cdf.eval())
    def testGeometricLogPmfMultidimensional(self):
        with self.cached_session():
            batch_size = 6
            probs = constant_op.constant([[.2, .3, .5]] * batch_size)
            probs_v = np.array([.2, .3, .5])
            x = np.array([[2., 3., 4., 5., 6., 7.]], dtype=np.float32).T
            geom = geometric.Geometric(probs=probs)
            expected_log_prob = stats.geom.logpmf(x, probs_v, loc=-1)
            log_prob = geom.log_prob(x)
            log_prob_values = log_prob.eval()
            self.assertEqual([6, 3], log_prob.get_shape())
            self.assertAllClose(expected_log_prob, log_prob_values)

            pmf = geom.prob(x)
            pmf_values = pmf.eval()
            self.assertEqual([6, 3], pmf.get_shape())
            self.assertAllClose(np.exp(expected_log_prob), pmf_values)
    def testGeometricAtBoundary(self):
        with self.cached_session():
            geom = geometric.Geometric(probs=1., validate_args=True)

            x = np.array([0., 2., 3., 4., 5., 6., 7.], dtype=np.float32)
            expected_log_prob = stats.geom.logpmf(x, [1.], loc=-1)
            # Scipy incorrectly returns nan.
            expected_log_prob[np.isnan(expected_log_prob)] = 0.

            log_prob = geom.log_prob(x)
            self.assertEqual([
                7,
            ], log_prob.get_shape())
            self.assertAllClose(expected_log_prob, log_prob.eval())

            pmf = geom.prob(x)
            self.assertEqual([
                7,
            ], pmf.get_shape())
            self.assertAllClose(np.exp(expected_log_prob), pmf.eval())

            expected_log_cdf = stats.geom.logcdf(x, 1., loc=-1)

            log_cdf = geom.log_cdf(x)
            self.assertEqual([
                7,
            ], log_cdf.get_shape())
            self.assertAllClose(expected_log_cdf, log_cdf.eval())

            cdf = geom.cdf(x)
            self.assertEqual([
                7,
            ], cdf.get_shape())
            self.assertAllClose(np.exp(expected_log_cdf), cdf.eval())

            expected_mean = stats.geom.mean(1., loc=-1)
            self.assertEqual([], geom.mean().get_shape())
            self.assertAllClose(expected_mean, geom.mean().eval())

            expected_variance = stats.geom.var(1., loc=-1)
            self.assertEqual([], geom.variance().get_shape())
            self.assertAllClose(expected_variance, geom.variance().eval())

            with self.assertRaisesOpError("Entropy is undefined"):
                geom.entropy().eval()
    def testGeomLogPmf(self):
        with self.cached_session():
            batch_size = 6
            probs = constant_op.constant([.2] * batch_size)
            probs_v = .2
            x = np.array([2., 3., 4., 5., 6., 7.], dtype=np.float32)
            geom = geometric.Geometric(probs=probs)
            expected_log_prob = stats.geom.logpmf(x, probs_v, loc=-1)
            log_prob = geom.log_prob(x)
            self.assertEqual([
                6,
            ], log_prob.get_shape())
            self.assertAllClose(expected_log_prob, log_prob.eval())

            pmf = geom.prob(x)
            self.assertEqual([
                6,
            ], pmf.get_shape())
            self.assertAllClose(np.exp(expected_log_prob), pmf.eval())
    def testGeometricSample(self):
        with self.cached_session():
            probs_v = [.3, .9]
            probs = constant_op.constant(probs_v)
            n = constant_op.constant(100000)
            geom = geometric.Geometric(probs=probs)

            samples = geom.sample(n, seed=12345)
            self.assertEqual([100000, 2], samples.get_shape())

            sample_values = samples.eval()
            self.assertFalse(np.any(sample_values < 0.0))
            for i in range(2):
                self.assertAllClose(sample_values[:, i].mean(),
                                    stats.geom.mean(probs_v[i], loc=-1),
                                    rtol=.02)
                self.assertAllClose(sample_values[:, i].var(),
                                    stats.geom.var(probs_v[i], loc=-1),
                                    rtol=.02)