示例#1
0
def filter_targets(obs, i, target_list, date_time, roof=2.5):
    """

    A function that filters a list of targets and returns a list with airmass
    less than < 2.5.

    TO IMPLEMENT:
        Move the testing to a different file or into a different function

    Args:
        obs: List of Observer objects that represent observatories
        target_list: List of FixedTarget objects that represent target coords
        date_time: The date and time range over which we check for
            observability
        roof: Float defining the maximum airmass we'll allow for our targets;
            will exclude targets with airmass larger than 2.5

    Returns:
        None

    """
    targets = format_targets(target_list)
    observers = format_observatories(obs)
    airmass_max = AirmassConstraint(roof)
    observability = is_observable(airmass_max, observers[i], targets,
                                  date_time)
    print(observability)
    print("Success!!")
    def __init__(self,
                 time_range,
                 targets,
                 site='cfht',
                 constraints=None,
                 supp_cols=None):

        # Get infos from the MasterFile
        if isinstance(targets, list):
            info = load_from_masterfile(*targets)
            supp_cols = supp_cols or [
                'pl_orbper', 'st_j', 'st_h', 'ra', 'dec', 'pl_eqt', 'st_teff'
            ]
        else:
            info = targets.copy()
            if supp_cols is None:
                supp_cols = list(info.keys())
                supp_cols.remove('pl_name')

        # Default constraint
        if constraints is None:
            constraints = [
                AtNightConstraint.twilight_nautical(),
                AirmassConstraint(max=2.5)
            ]

        # Define time constraint and append it
        t1, t2 = Time(time_range)
        constraints.append(TimeConstraint(t1, t2))

        # Convert to List_of_constraints (useful to print and save)
        constraints_list = List_of_constraints(constraints)

        # Save infos
        self.info = info
        self.constraints = constraints_list
        self.meta = {
            'Time_limits': [t1, t2],
            'Target_list': info['pl_name'].tolist(),
            'Site': site,
            **constraints_list.show()
        }
        self.supp_cols = supp_cols
        self.info_cols = ['pl_name'] + supp_cols
        self.obs = Observer.at_site(site)
        #         self.n_eclipses = n_eclipses

        # Resolve targets
        self.targets = [self.resolve_target(i) for i in range(len(targets))]
示例#3
0
 def __init__(self,
              lat,
              lon,
              elevation,
              ra,
              dec,
              discDate,
              airmassConstraint=2):
     self.airmassConstraint = airmassConstraint
     self.altConstraint = math.degrees(math.asin(1 /
                                                 self.airmassConstraint))
     self.location = EarthLocation(lat=lat, lon=lon, height=elevation * u.m)
     self.discDate = discDate
     self.observer = Observer(location=self.location, name="LT")
     self.target = SkyCoord(ra=ra, dec=dec, unit=(u.hourangle, u.deg))
     self.constraints = [
         AirmassConstraint(self.airmassConstraint),
         AtNightConstraint.twilight_astronomical()
     ]
     print("Discovery Date :", discDate.value)
示例#4
0
def get_observability_fraction(name="WASP 4", site='keck', ra=None, dec=None,
                               start_time=Time('2019-09-13 20:00:00'),
                               end_time=Time('2020-07-31 20:00:00')):

    if isinstance(name,str) and ra is None and dec is None:
        target = FixedTarget.from_name(name)
    elif isinstance(ra,float) and isinstance(dec,float):
        target_coord = SkyCoord(ra=ra*u.deg, dec=dec*u.deg)
        target = FixedTarget(coord=target_coord, name=name)
    else:
        raise NotImplementedError('failed to make target')

    observer = Observer.at_site(site)

    constraints = [AltitudeConstraint(min=20*u.deg, max=85*u.deg),
                   AirmassConstraint(3),
                   AtNightConstraint.twilight_civil()]

    # over every day between start and end time, check if the observing
    # constraints are meetable.
    days = Time(
        np.arange(start_time.decimalyear, end_time.decimalyear,
                  1/(365.25)),
        format='decimalyear'
    )

    frac, ever_observable = [], []

    for day in days:

        table = observability_table(constraints, observer, [target],
                                    time_range=day)
        frac.append(float(table['fraction of time observable']))
        ever_observable.append(bool(table['ever observable']))

    ever_observable = np.array(ever_observable)
    frac = np.array(frac)

    return frac, ever_observable, days
示例#5
0
def main(args=None):
    p = parser()
    opts = p.parse_args(args)

    # Late imports
    from astroplan import (AirmassConstraint, AtNightConstraint, Observer,
                           is_event_observable)
    from astropy.coordinates import EarthLocation, SkyCoord
    from astropy.time import Time
    from astropy import units as u
    from matplotlib import dates
    from matplotlib import pyplot as plt
    from tqdm import tqdm

    from ..io import fits
    from .. import moc
    from .. import plot  # noqa

    names = ('name', 'longitude', 'latitude', 'height')
    length0, *lengths = (len(getattr(opts, 'site_{}'.format(name)))
                         for name in names)
    if not all(length0 == length for length in lengths):
        p.error('these options require equal numbers of arguments: {}'.format(
            ', '.join('--site-{}'.format(name) for name in names)))

    observers = [Observer.at_site(site) for site in opts.site]
    for name, lon, lat, height in zip(opts.site_name, opts.site_longitude,
                                      opts.site_latitude, opts.site_height):
        location = EarthLocation(lon=lon * u.deg,
                                 lat=lat * u.deg,
                                 height=(height or 0) * u.m)
        observers.append(Observer(location, name=name))
    observers = list(reversed(observers))

    m = fits.read_sky_map(opts.input.name, moc=True)

    t0 = Time(opts.time) if opts.time is not None else Time.now()
    times = t0 + np.linspace(0, 1) * u.day

    theta, phi = moc.uniq2ang(m['UNIQ'])
    coords = SkyCoord(phi, 0.5 * np.pi - theta, unit='rad')
    prob = np.asarray(moc.uniq2pixarea(m['UNIQ']) * m['PROBDENSITY'])

    constraints = [
        getattr(AtNightConstraint, 'twilight_{}'.format(opts.twilight))(),
        AirmassConstraint(opts.max_airmass)
    ]

    fig = plt.figure()
    width, height = fig.get_size_inches()
    fig.set_size_inches(width, (len(observers) + 1) / 16 * width)
    ax = plt.axes()
    locator = dates.AutoDateLocator()
    formatter = dates.DateFormatter('%H:%M')
    ax.set_xlim([times[0].plot_date, times[-1].plot_date])
    ax.xaxis.set_major_formatter(formatter)
    ax.xaxis.set_major_locator(locator)
    ax.set_xlabel("Time from {0} [UTC]".format(min(times).datetime.date()))
    plt.setp(ax.get_xticklabels(), rotation=30, ha='right')
    ax.set_yticks(np.arange(len(observers)))
    ax.set_yticklabels([observer.name for observer in observers])
    ax.yaxis.set_tick_params(left=False)
    ax.grid(axis='x')
    ax.spines['bottom'].set_visible(False)
    ax.spines['top'].set_visible(False)

    for i, observer in enumerate(tqdm(observers)):
        observable = 100 * np.dot(
            prob, is_event_observable(constraints, observer, coords, times))
        ax.contourf(times.plot_date, [i - 0.4, i + 0.4],
                    np.tile(observable, (2, 1)),
                    levels=np.arange(10, 110, 10),
                    cmap=plt.get_cmap().reversed())

    plt.tight_layout()

    # Show or save output.
    opts.output()
from astroplan.scheduling import Schedule, ObservingBlock
from astroplan import FixedTarget, Observer, Transitioner, AirmassConstraint
from astropy.time import Time
from SimpleScheduler import SimpleScheduler
import astropy.units as u
import matplotlib.pyplot as plt
from astroplan.plots import plot_schedule_airmass

con = AirmassConstraint(2)
apo = Observer.at_site('apo')
deneb = FixedTarget.from_name('Deneb')
m13 = FixedTarget.from_name('M13')
blocks = [ObservingBlock(deneb, 20 * u.minute, 0, con)]
blocks.append(ObservingBlock(m13, 20 * u.minute, 0))

# Speed of telescope
transitioner = Transitioner(slew_rate=2 * u.deg / u.second)

# Schedule the observing blocks
schedule = Schedule(Time('2016-07-06 19:00'), Time('2016-07-07 19:00'))
scheduler = SimpleScheduler(observer=apo,
                            transitioner=transitioner,
                            constraints=[con])
scheduler(blocks, schedule)

plot_schedule_airmass(schedule)
plt.legend()
#plt.show()
plt.savefig('Our_scheduler.png')
示例#7
0
def vis(date, objects, obj_tab):

    #This tool is designed for the Magellan Telescope @ Las Camapanas Observatory, in Chile
    las = Observer.at_site('LCO')
    #both las and los are the locations of MagAO, but one is used for the plot and the other for the time
    lco = EarthLocation.of_site('Las Campanas Observatory')

    userEntered_list = list(objects.split(","))
    target_list = userEntered_list

    targets = []
    for i in range(1, len(obj_tab)):
        ra = (obj_tab.iloc[i, 2])[1:] + ' hours'
        dec = (obj_tab.iloc[i, 3])[1:] + ' degrees'
        print(ra + ',' + dec)
        targets.append(
            FixedTarget(coord=SkyCoord(ra=ra, dec=dec),
                        name=target_list[i - 1]))

    constraints = [
        AltitudeConstraint(10 * u.deg, 80 * u.deg),
        AirmassConstraint(5),
        AtNightConstraint.twilight_civil()
    ]

    start_time = las.sun_set_time(Time(date), which='nearest')
    end_time = las.sun_rise_time(Time(date), which='nearest')
    date = start_time.iso[:10] + ' to ' + end_time.iso[:10]

    time_range = Time([start_time, end_time])

    # In[ ]:

    delta_t = end_time - start_time
    observe_time = start_time + delta_t * np.linspace(0, 1, 75)

    # In[ ]:

    # Are targets *ever* observable in the time range?
    ever_observable = is_observable(constraints,
                                    las,
                                    targets,
                                    time_range=time_range)

    # Are targets *always* observable in the time range?
    always_observable = is_always_observable(constraints,
                                             las,
                                             targets,
                                             time_range=time_range)

    # During what months are the targets ever observable?
    best_months = months_observable(constraints, las, targets)

    # In[ ]:

    table = observability_table(constraints,
                                las,
                                targets,
                                time_range=time_range)
    print(table)

    table = table.to_pandas()

    np.savetxt(
        'static/data/visibility.txt',
        table,
        fmt="%-30s",
        header=
        'Target name                  ever observable                always observable              fraction of time observable'
    )
示例#8
0
for i in range(0, l):
    targs.append(
        FixedTarget(coord=SkyCoord(ra=(t[i]['ra']),
                                   dec=(t[i]['dec']),
                                   unit=(u.hourangle, u.deg)),
                    name=t[i]['alt_name'] + " [" + t[i]['iau_name'] + ", " +
                    t[i]['ra'] + ", " + t[i]['dec'] + "]"))
    # Accounting for the fact that ra is in [hour min sec] and dec is in [deg arcmin arcsec]
    # the "name" attribute is all of the information just smashed together and I know it's unclean, please don't judge me

    # print((targs[len(targs)-1].name)) # This was just to check where errors occurred

time_range = Time(["2018-04-15 00:01", "2018-04-30 23:59"])
# This just takes the whole swath of time, not refining it or anything

cons = [AirmassConstraint(2), AtNightConstraint.twilight_astronomical()]
# don't use civil twilight because astronomers aren't civil

obs_tab = observability_table(cons, kitt, targs, time_range=time_range)
# print(obs_tab)

obs_targs = []
total_save = []
# total_save is to keep all the data, not just some of it

for i in range(0, len(obs_tab)):
    if obs_tab[i]['ever observable']:
        obs_targs.append([
            obs_tab[i]['target name'],
            obs_tab[i]['fraction of time observable']
        ])
示例#9
0
def main(event, context):
    filename = 'MS190311l-1-Preliminary'

    # Get targetlist
    target_list = 'triggers/%s_bayestar.csv'%filename # replace with your object key
    s3 = boto3.resource('s3')
    print(target_list)
    s3.Bucket(bucketname).download_file(target_list, '/tmp/%s_targetlist.csv'%filename)

    galaxies = Table.read('/tmp/%s_targetlist.csv'%filename)
    del galaxies['col0']
    galaxies = np.array(galaxies.as_array().tolist())

    """Get the full galaxy list, and find which are good to observe at NOT"""

    # Setup observer
    time = Time.now()
    NOT = Observer.at_site("lapalma")

    tel_constraints = [AtNightConstraint.twilight_civil(), AirmassConstraint(max = 5)]



    # Check if nighttime
    if not NOT.is_night(time):
        sunset_tonight = NOT.sun_set_time(time, which='nearest')
        dt_sunset = (sunset_tonight - time)
        print("Daytime at the NOT! Preparing a plan for observations starting next sunset in ~ %s hours."%(int(dt_sunset.sec/3600)))
        time = sunset_tonight + 5*u.minute
    else:
        print("It's nighttime at the NOT! Preparing a plan immeidately.")


    # Get target list
    galaxycoord=SkyCoord(ra=galaxies[:, 1]*u.deg,dec=galaxies[:, 2]*u.deg)
    targets = [FixedTarget(coord=SkyCoord(ra=ra*u.deg, dec=dec*u.deg), name=int(name))
               for name, ra, dec in galaxies[:, :3]]

    # Construct astroplan OBs
    blocks = []
    exposure = 300*u.second
    read_out = 20 * u.second
    for priority, targ in enumerate(targets):
        for bandpass in ['r']:

            b = ObservingBlock.from_exposures(
                targ,
                priority,
                exposure,
                1,
                read_out,
                configuration={'filter': bandpass})

            blocks.append(b)

    # Transitioner between targets
    slew_rate = 10.8*u.deg/u.second
    transitioner = Transitioner(
        slew_rate, {
            'filter': {
                ('g', 'r'): 30 * u.second,
                ('i', 'z'): 30 * u.second,
                'default': 30 * u.second
            }
        })


    # Initialize the priority scheduler with the constraints and transitioner
    prior_scheduler = SequentialScheduler(constraints = tel_constraints,
                                        observer = NOT,
                                        transitioner = transitioner)

    # Initialize a Schedule object, to contain the new schedule around night
    night_length = NOT.sun_set_time(time, which='nearest') - NOT.sun_rise_time(time, which='nearest')
    noon_before = time - 4 * u.hour
    noon_after = time + 16 * u.hour

    priority_schedule = Schedule(noon_before, noon_after)

    # Call the schedule with the observing blocks and schedule to schedule the blocks
    prior_scheduler(blocks, priority_schedule)

    # Remove transition blocks to read observing order
    priority_schedule_table = priority_schedule.to_table()
    mask = priority_schedule_table["target"] != "TransitionBlock"
    pruned_schedule = priority_schedule_table[mask]
    idxs = np.arange(0, len(pruned_schedule["target"]))

    # pl.figure(figsize = (14,6))
    # plot_schedule_airmass(priority_schedule, show_night=True)
    # pl.legend(loc = "upper right")
    # schedule_path = filename+"schedule.pdf"
    # pl.savefig(schedule_path)
    # pl.clf()
    # print("Finished preparing an observing plan.")

    # s3.Bucket(bucketname).upload_file(schedule_path, 'triggers/%s'%schedule_path)



    instrumements = ["ALFOSC"]
    nothing_to_observe = True
    for tel in range(0, len(instrumements)):
        print("Writing a plan for {}".format(instrumements[tel]))
        outlist = [0]*galaxies.shape[0]
        for i in range(tel, galaxies.shape[0], len(instrumements)):
            ra = Angle(galaxies[i, 1] * u.deg)
            dec = Angle(galaxies[i, 2] * u.deg)
            mask = pruned_schedule['target'].astype("int") == int(galaxies[i, 0])
            targ_row = pruned_schedule[mask]
            idx = idxs[mask]

            # Get observing scheduling rank and airmass at observing time.
            try:
                airm = NOT.altaz(Time(targ_row["start time (UTC)"].data), targets[i]).secz
                t_s = targ_row["start time (UTC)"].data
                t_e = targ_row["end time (UTC)"].data

            except:
                print("GLADE target name %s not found in schedule. Probably not visible. Replacing entry with -99"%(galaxies[i, 0]))
                idx = -99
                airm = -99


            outlist[i] = int(galaxies[i, 0]), ra.to_string(
                unit=u.hourangle, sep=':', precision=2, pad=True), dec.to_string(
                    sep=':', precision=2, alwayssign=True,
                    pad=True), idx, airm, galaxies[i, 3], galaxies[i, 4], galaxies[
                        i, 5], t_s, t_e


        header = ["GladeID", "RA", "Dec", "Observing number", "Airmass at observing time", "Distance", "B-band luminosity", "Probability", "Schduled integration start", "Schduled integration end"]
        outframe = Table(np.array(outlist), names=header)
        csv_path = filename+"_schedule.csv"
        ascii.write(outframe, "/tmp/"+csv_path, format='csv', overwrite=True, fast_writer=False)

        s3.Bucket(bucketname).upload_file("/tmp/"+csv_path, 'triggers/%s'%csv_path)


    return
示例#10
0
    def get_schedulable_blocks(self) -> list:
        """Returns list of schedulable blocks.

        Returns:
            List of schedulable blocks
        """

        # get requests
        r = requests.get(urljoin(self._url,
                                 '/api/requestgroups/schedulable_requests/'),
                         headers=self._header,
                         proxies=self._proxies)
        if r.status_code != 200:
            raise ValueError('Could not fetch list of schedulable requests.')
        schedulable = r.json()

        # get proposal priorities
        r = requests.get(urljoin(self._url, '/api/proposals/'),
                         headers=self._header,
                         proxies=self._proxies)
        if r.status_code != 200:
            raise ValueError('Could not fetch list of proposals.')
        tac_priorities = {
            p['id']: p['tac_priority']
            for p in r.json()['results']
        }

        # loop all request groups
        blocks = []
        for group in schedulable:
            # get base priority, which is tac_priority * ipp_value
            proposal = group['proposal']
            if proposal not in tac_priorities:
                log.error('Could not find proposal "%s".', proposal)
                continue
            base_priority = group['ipp_value'] * tac_priorities[proposal]

            # loop all requests in group
            for req in group['requests']:
                # still pending?
                if req['state'] != 'PENDING':
                    continue

                # duration
                duration = req['duration'] * u.second

                # time constraints
                time_constraints = [
                    TimeConstraint(Time(wnd['start']), Time(wnd['end']))
                    for wnd in req['windows']
                ]

                # loop configs
                for cfg in req['configurations']:
                    # get instrument and check, whether we schedule it
                    instrument = cfg['instrument_type']
                    if instrument.lower(
                    ) != self._portal_instrument_type.lower():
                        continue

                    # target
                    t = cfg['target']
                    target = SkyCoord(t['ra'] * u.deg,
                                      t['dec'] * u.deg,
                                      frame=t['type'].lower())

                    # constraints
                    c = cfg['constraints']
                    constraints = [
                        AirmassConstraint(max=c['max_airmass'],
                                          boolean_constraint=False),
                        MoonSeparationConstraint(min=c['min_lunar_distance'] *
                                                 u.deg)
                    ]

                    # priority is base_priority times duration in minutes
                    priority = base_priority * duration.value / 60.

                    # create block
                    block = ObservingBlock(
                        FixedTarget(target, name=req["id"]),
                        duration,
                        priority,
                        constraints=[*constraints, *time_constraints],
                        configuration={'request': req})
                    blocks.append(block)

        # return blocks
        return blocks
示例#11
0
def construct_plan(data,
                   site,
                   start_time,
                   end_time,
                   constraints=None,
                   max_priority=3):
    if constraints is None:
        constraints = [
            AltitudeConstraint(10 * u.deg, 80 * u.deg),
            AirmassConstraint(5),
            AtNightConstraint.twilight_civil()
        ]

    data = data.sort_values(by=["Add. Data Priority", "RA"], ascending=[1, 1])

    time_range = Time([start_time, end_time])

    # targets.lis format:
    # NAME
    # <RA hh:mm:ss.ss> <DEC dd:mm:ss.s>
    # <HMJD/BMJD T0 err P err
    #
    # NAME...
    # ENTRY = "{}\n{} {}\n{} linear {} {} {} {}\n\n"
    targets_list = ""
    targets_prg = ""
    targets_notes = ""
    for name, row in data.iterrows():
        row['RA'], row['Dec'] = row['RA'].replace(" ",
                                                  ":"), row['Dec'].replace(
                                                      " ", ":")

        target = FixedTarget(coord=SkyCoord(ra=Angle(row['RA'],
                                                     unit='hourangle'),
                                            dec=Angle(row['Dec'],
                                                      unit='degree')),
                             name=name)

        # Does the target rise above the horizon?
        ever_observable = is_observable(constraints,
                                        site,
                                        target,
                                        time_range=time_range)

        # Parse the ephemeris data
        try:
            T0, T0_err = row['T(0) +/- (d)'].replace(" ", "").split("(")
            calendar, T0 = T0.split("=")
            T0_err = T0_err.replace(")", "")

            N = len(T0.split(".")[1]) - len(T0_err)
            T0_err = "0.{}{}".format(("0" * N), T0_err)

            P, P_err = row['P +/- (d)'].split("(")
            P_err = P_err.replace(")", "")

            M = len(P.split(".")[1]) - len(P_err)
            P_err = "0.{}{}".format(("0" * M), P_err)
        except ValueError:
            print("Failed to extract row! {}".format(name))
            continue

        # Get the priority of this system
        try:
            priority = int(row['Add. Data Priority'])
        except ValueError:
            continue

        # Logic about if we want to use this target
        writeme = ever_observable[0] and (priority <= max_priority)

        # If true, add to the list
        if writeme:
            # Output data formats
            line = "{}\n{} {}\n{} linear {} {} {} {}\n\n".format(
                name, row['RA'], row['Dec'], calendar, T0, T0_err, P, P_err)
            prgline = "{}\n0.7 1.3 3 8\n\n".format(name)
            notesline = '{}: "{}"\n\n\n'.format(name, row['Target Notes'])

            targets_list += line
            targets_prg += prgline
            targets_notes += notesline

    # Write out files
    with open(os.path.join('OUTPUT', 'targets.lis'), 'w') as f:
        f.write(targets_list)
    with open(os.path.join('OUTPUT', 'targets.prg'), 'w') as f:
        f.write(targets_prg)
    with open(os.path.join('OUTPUT', 'targets.txt'), 'w') as f:
        f.write(targets_notes)
from astroplan import ObservingBlock, AirmassConstraint

### There will be more types of observing block
## each observing type will have some constainst and configuration that more blocks will share
surveyConfig = None
surveyConst = AirmassConstraint(2)
folowUpConfig = None
folowUpConst = None


#
def survey(target, duration, priority, configuration, constraints):
    conf = surveyConfig + configuration
    const = constraints + surveyConst
    return ObservingBlock(target=target, duration=duration, priority=priority, configuration=conf,
                          constraints=constraints)


def folow_up(target, duration, priority, configuration, constraints):
    conf = folowUpConfig + configuration
    const = constraints + folowUpConst
    return ObservingBlock(target=target, duration=duration, priority=priority, configuration=conf,
                          constraints=constraints)
示例#13
0
from unittest.mock import patch

from django.test import TestCase

from mop.toolbox.obs_details import all_night_moon_sep, calculate_visibility
from mop.toolbox.LCO_obs_locs import choose_loc

OGG = choose_loc('OGG')
v_test_target = ['Sirius', 100.7362500 * u.deg, -16.6459444 * u.deg]
v_date = Time("2019-12-25 00:00:00", scale='utc')
v_coords = SkyCoord(v_test_target[1], v_test_target[2], frame='icrs')
v_obs_begin = OGG.twilight_evening_astronomical(v_date, which='nearest')
v_obs_end = OGG.twilight_morning_astronomical(v_date, which='next')
v_observing_range = [v_obs_begin, v_obs_end]
constraints = [
    AirmassConstraint(2.0),
    AltitudeConstraint(20 * u.deg, 85 * u.deg),
    AtNightConstraint.twilight_astronomical()
]
ever_observable = is_observable(constraints,
                                OGG,
                                v_coords,
                                time_range=v_observing_range)

v_fail_start = Time("2019-12-24 10:00:00", scale='utc')
v_fail_end = Time("2019-12-25 10:00:00", scale='utc')


class TestVisibilityCalc(TestCase):
    def test_timeobj(self):
        self.assertEqual(v_date.scale, 'utc')
示例#14
0
def plan_when_transits_will_occur(
        filename='targets.txt',
        observatory='Southern African Large Telescope',
        start='2017-06-22',
        end='2017-06-28',
        airmass_limit=2.5,
        moon_distance=10,
        do_secondary=True,
        method='by_night'):
    '''
    Plan when targets will be visibile and transiting from a site. 
    
    Inputs
    ------
    filename : str
        A plain text file with the following columns:
            target : The name of the target (e.g. J0555-57).
            RA     : The right ascension of the target (e.g. 05h55m32.62s).
            DEC    : The declination of the target (e.g. -57d17m26.1s).
            epoch* : The epoch of the transit. Youc can either use:
                         epoch_HJD-2400000 : HJD - 24500000
                         epoch_BJD-2455000 : MJD
            Period : The period of the system (days).
            Secondary : can be True or False depending on whether you want
                        to see when the secondary transits will be.
    observatory : str
        The observatory you are observing from. See later for list of available
        observatories (accepted by astropy).    
    start : str
        The first night of observation (e.g. 2017-08-31).
    end : str
        The last night of observation (e.g. 2017-09-10).
    airmass_limit : float
        The maximum airmass you want to observe through. 
    moon_distance : float
        The closest the target can be t the moon in arcmins.
    do_secondary = True:
        Look for secondary eclipses assuming circularised orbits. 
        
    Available observator names are:
         'ALMA',
         'Anglo-Australian Observatory',
         'Apache Point',
         'Apache Point Observatory',
         'Atacama Large Millimeter Array',
         'BAO',
         'Beijing XingLong Observatory',
         'Black Moshannon Observatory',
         'CHARA',
         'Canada-France-Hawaii Telescope',
         'Catalina Observatory',
         'Cerro Pachon',
         'Cerro Paranal',
         'Cerro Tololo',
         'Cerro Tololo Interamerican Observatory',
         'DCT',
         'Discovery Channel Telescope',
         'Dominion Astrophysical Observatory',
         'Gemini South',
         'Hale Telescope',
         'Haleakala Observatories',
         'Happy Jack',
         'Jansky Very Large Array',
         'Keck Observatory',
         'Kitt Peak',
         'Kitt Peak National Observatory',
         'La Silla Observatory',
         'Large Binocular Telescope',
         'Las Campanas Observatory',
         'Lick Observatory',
         'Lowell Observatory',
         'Manastash Ridge Observatory',
         'McDonald Observatory',
         'Medicina',
         'Medicina Dish',
         'Michigan-Dartmouth-MIT Observatory',
         'Mount Graham International Observatory',
         'Mt Graham',
         'Mt. Ekar 182 cm. Telescope',
         'Mt. Stromlo Observatory',
         'Multiple Mirror Telescope',
         'NOV',
         'National Observatory of Venezuela',
         'Noto',
         'Observatorio Astronomico Nacional, San Pedro Martir',
         'Observatorio Astronomico Nacional, Tonantzintla',
         'Palomar',
         'Paranal Observatory',
         'Roque de los Muchachos',
         'SAAO',
         'SALT',
         'SRT',
         'Siding Spring Observatory',
         'Southern African Large Telescope',
         'Subaru',
         'Subaru Telescope',
         'Sutherland',
         'Vainu Bappu Observatory',
         'Very Large Array',
         'W. M. Keck Observatory',
         'Whipple',
         'Whipple Observatory',
         'aao',
         'alma',
         'apo',
         'bmo',
         'cfht',
         'ctio',
         'dao',
         'dct',
         'ekar',
         'example_site',
         'flwo',
         'gemini_north',
         'gemini_south',
         'gemn',
         'gems',
         'greenwich',
         'haleakala',
         'irtf',
         'keck',
         'kpno',
         'lapalma',
         'lasilla',
         'lbt',
         'lco',
         'lick',
         'lowell',
         'mcdonald',
         'mdm',
         'medicina',
         'mmt',
         'mro',
         'mso',
         'mtbigelow',
         'mwo',
         'noto',
         'ohp',
         'paranal',
         'salt',
         'sirene',
         'spm',
         'srt',
         'sso',
         'tona',
         'vbo',
         'vla'.
    '''
    ###################
    # Try reading table
    ###################
    try:
        target_table = Table.read(filename, format='ascii')
    except:
        raise ValueError(
            'I cant open the target file (make sure its ascii with the following first line:\ntarget		RA		DEC		epoch_HJD-2400000	Period		Secondary'
        )

##############################
# try reading observation site
##############################
    try:
        observation_site = coord.EarthLocation.of_site(observatory)
        observation_handle = Observer(location=observation_site)
        observation_handle1 = Observer.at_site(observatory)
    except:
        print(coord.EarthLocation.get_site_names())
        raise ValueError('The site is not understood')

###################################
# Try reading start and end times
###################################
    try:
        start_time = Time(start + ' 12:01:00', location=observation_site)
        end_time = Time(end + ' 12:01:00', location=observation_site)
        number_of_nights = int(end_time.jd - start_time.jd)
        time_range = Time([start + ' 12:01:00', end + ' 12:01:00'])
        print('Number of nights: {}'.format(number_of_nights))
    except:
        raise ValueError('Start and end times not understood')

#####################
# Now do constraints
#####################
#try:

    constraints = [
        AltitudeConstraint(0 * u.deg, 90 * u.deg),
        AirmassConstraint(3),
        AtNightConstraint.twilight_civil()
    ]
    #except:
    #	raise ValueError('Unable to get set constraints')

    if method == 'by_night':
        for i in range(number_of_nights):
            start_time_tmp = start_time + TimeDelta(
                i,
                format='jd')  #  get start time (doesent need to be accurate)
            end_time_tmp = start_time + TimeDelta(
                i + 1,
                format='jd')  #  get start time (doesent need to be accurate)
            print('#' * 80)
            start_time_tmpss = start_time_tmp.datetime.ctime().split(
            )  # ['Fri', 'Dec', '24', '12:00:00', '2010']
            print('Night {} - {} {} {} {}'.format(i + 1, start_time_tmpss[0],
                                                  start_time_tmpss[2],
                                                  start_time_tmpss[1],
                                                  start_time_tmpss[-1]))
            print('#' * 80)

            # Now print Almnac information (sunset and end of evening twilight
            print('Almnac:')
            sun_set = observation_handle.sun_set_time(start_time_tmp,
                                                      which='next')
            print('Sunset:\t\t\t\t\t\t\t' + sun_set.utc.datetime.ctime())

            twilight_evening_astronomical = observation_handle.twilight_evening_astronomical(
                start_time_tmp, which='next')  # -18
            twilight_evening_nautical = observation_handle.twilight_evening_nautical(
                start_time_tmp, which='next')  # -12
            twilight_evening_civil = observation_handle.twilight_evening_civil(
                start_time_tmp, which='next')  # -6 deg
            print('Civil evening twilight (-6 deg) (U.T.C):\t\t' +
                  twilight_evening_civil.utc.datetime.ctime())
            print('Nautical evening twilight (-12 deg) (U.T.C):\t\t' +
                  twilight_evening_nautical.utc.datetime.ctime())
            print('Astronomical evening twilight (-18 deg) (U.T.C):\t' +
                  twilight_evening_astronomical.utc.datetime.ctime())
            print('\n')

            twilight_morning_astronomical = observation_handle.twilight_morning_astronomical(
                start_time_tmp, which='next')  # -18
            twilight_morning_nautical = observation_handle.twilight_morning_nautical(
                start_time_tmp, which='next')  # -12
            twilight_morning_civil = observation_handle.twilight_morning_civil(
                start_time_tmp, which='next')  # -6 deg
            print('Astronomical morning twilight (-18 deg) (U.T.C):\t' +
                  twilight_morning_astronomical.utc.datetime.ctime())
            print('Nautical morning twilight (-12 deg) (U.T.C):\t\t' +
                  twilight_morning_nautical.utc.datetime.ctime())
            print('Civil morning twilight (-6 deg) (U.T.C):\t\t' +
                  twilight_morning_civil.utc.datetime.ctime())
            sun_rise = observation_handle.sun_rise_time(start_time_tmp,
                                                        which='next')
            print('Sunrise:\t\t\t\t\t\t' + sun_rise.utc.datetime.ctime())
            print('\n')

            # stuff for creating plot
            plot_mids = []
            plot_names = []
            plot_widths = []

            for j in range(len(target_table)):
                # Extract information
                star_coordinates = coord.SkyCoord('{} {}'.format(
                    target_table['RA'][j], target_table['DEC'][j]),
                                                  unit=(u.hourangle, u.deg),
                                                  frame='icrs')
                star_fixed_coord = FixedTarget(coord=star_coordinates,
                                               name=target_table['target'][j])

                ####################
                # Get finder image
                ####################
                '''
                plt.close()
                try:
                finder_image = plot_finder_image(star_fixed_coord,reticle=True,fov_radius=10*u.arcmin)
                except:
                pass
                plt.savefig(target_table['target'][j]+'_finder_chart.eps')
                '''

                P = target_table['Period'][j]
                Secondary_transit = target_table['Secondary'][j]
                transit_half_width = TimeDelta(
                    target_table['width'][j] * 60 * 60 / 2,
                    format='sec')  # in seconds for a TimeDelta

                # now convert T0 to HJD -> JD -> BJD so we can cout period
                if 'epoch_HJD-2400000' in target_table.colnames:
                    #print('Using HJD-2400000')
                    T0 = target_table['epoch_HJD-2400000'][j]
                    T0 = Time(T0 + 2400000, format='jd')  # HJD given by WASP
                    ltt_helio = T0.light_travel_time(star_coordinates,
                                                     'heliocentric',
                                                     location=observation_site)
                    T0 = T0 - ltt_helio  # HJD -> JD
                    ltt_bary = T0.light_travel_time(star_coordinates,
                                                    'barycentric',
                                                    location=observation_site)
                    T0 = T0 + ltt_bary  # JD -> BJD
                elif 'epoch_BJD-2455000' in target_table.colnames:
                    #print('Using BJD-2455000')
                    T0 = target_table['epoch_BJD-2455000'][j] + 2455000
                    T0 = Time(T0, format='jd')  # BJD
                else:
                    print('\n\n\n\n FAILE\n\n\n\n')
                    continue

                ##########################################################
                # Now start from T0 and count in periods to find transits
                ##########################################################
                # convert star and end time to BJD
                ltt_bary_start_time = start_time_tmp.light_travel_time(
                    star_coordinates, 'barycentric',
                    location=observation_site)  # + TimeDelta(i,format='jd')
                start_time_bary = start_time_tmp + ltt_bary_start_time  # + TimeDelta(i,format='jd') #  convert start time to BJD

                ltt_bary_end_time_tmp = end_time_tmp.light_travel_time(
                    star_coordinates, 'barycentric',
                    location=observation_site)  # + TimeDelta(i,format='jd')
                end_time_bary = end_time_tmp + ltt_bary_start_time  #+ TimeDelta(i+1,format='jd') #  convert end time to BJD and add 1 day 12pm -> 12pm the next day

                elapsed = end_time_bary - start_time_bary  # now this is 24 hours from the start day 12:00 pm

                # now count transits
                time = Time(T0.jd, format='jd')  # make a temporary copy
                transits = []
                primary_count, secondary_count = 0, 0
                while time.jd < end_time_bary.jd:
                    if (time.jd > start_time_bary.jd) and (time.jd <
                                                           end_time_bary.jd):
                        if is_observable(constraints,
                                         observation_handle,
                                         [star_fixed_coord],
                                         times=[time])[0] == True:
                            transits.append(time)
                            primary_count += 1
                    if Secondary_transit == 'yes':
                        timesecondary = time + TimeDelta(P / 2, format='jd')
                        if (timesecondary.jd > start_time_bary.jd) and (
                                timesecondary.jd < end_time_bary.jd):
                            if is_observable(constraints,
                                             observation_handle,
                                             [star_fixed_coord],
                                             times=[timesecondary])[0] == True:
                                transits.append(timesecondary)
                                secondary_count += 1

                    time = time + TimeDelta(P,
                                            format='jd')  # add another P to T0

                # Now find visible transits
                transits = [
                    i for i in transits
                    if is_observable(constraints,
                                     observation_handle, [star_fixed_coord],
                                     times=[i])[0] == True
                ]

                if len(transits) == 0:
                    message = '{} has no transits.'.format(
                        target_table['target'][j])
                    print('-' * len(message))
                    print(message)
                    print('-' * len(message))
                    print('\n')
                    plt.close()
                    continue
                else:
                    message = '{} has {} primary transits and {} secondary transits.'.format(
                        target_table['target'][j], primary_count,
                        secondary_count)
                    print('-' * len(message))
                    print(message)
                    print('RA: {}'.format(target_table['RA'][j]))
                    print('DEC: {}'.format(target_table['DEC'][j]))
                    print('Epoch: 2000')
                    print('T0 (BJD): {}'.format(T0.jd))
                    print('Period: {}'.format(P))
                    print('Transit width (hr): {}'.format(
                        target_table['width'][j]))
                    print('-' * len(message))
                    print('\n')

                for i in transits:
                    # currently transit times are in BJD (need to convert to HJD to check
                    ltt_helio = i.light_travel_time(star_coordinates,
                                                    'barycentric',
                                                    location=observation_site)
                    ii = i - ltt_helio
                    ltt_helio = ii.light_travel_time(star_coordinates,
                                                     'heliocentric',
                                                     location=observation_site)
                    ii = ii + ltt_helio

                    transit_1 = i - transit_half_width - TimeDelta(
                        7200, format='sec')  # ingress - 2 hr
                    transit_2 = i - transit_half_width - TimeDelta(
                        3600, format='sec')  # ingress - 2 hr
                    transit_3 = i - transit_half_width  # ingress
                    transit_4 = i + transit_half_width  # egress
                    transit_5 = i + transit_half_width + TimeDelta(
                        3600, format='sec')  # ingress - 2 hr
                    transit_6 = i + transit_half_width + TimeDelta(
                        7200, format='sec')  # ingress - 2 hr

                    if (((i.jd - time.jd) / P) - np.floor(
                        (i.jd - time.jd) / P) < 0.1) or ((
                            (i.jd - time.jd) / P) - np.floor(
                                (i.jd - time.jd) / P) > 0.9):
                        print('Primary Transit:')
                        print('-' * len('Primary Transit'))
                    if 0.4 < ((i.jd - time.jd) / P) - np.floor(
                        (i.jd - time.jd) / P) < 0.6:
                        print('Secondary Transit')
                        print('-' * len('Secondary Transit'))

                    ##################
                    # now get sirmass
                    ##################
                    altaz = star_coordinates.transform_to(
                        AltAz(obstime=transit_1, location=observation_site))
                    hourangle = observation_handle1.target_hour_angle(
                        transit_1, star_coordinates)
                    hourangle = 24 * hourangle.degree / 360
                    if hourangle > 12:
                        hourangle -= 24
                    print('Ingress - 2hr (U.T.C):\t\t\t\t\t' +
                          transit_1.utc.datetime.ctime() +
                          '\tAirmass: {:.2f}\tHA:{:.2f}'.format(
                              altaz.secz, hourangle))

                    altaz = star_coordinates.transform_to(
                        AltAz(obstime=transit_2, location=observation_site))
                    hourangle = observation_handle1.target_hour_angle(
                        transit_2, star_coordinates)
                    hourangle = 24 * hourangle.degree / 360
                    if hourangle > 12:
                        hourangle -= 24
                    print('Ingress - 1hr (U.T.C):\t\t\t\t\t' +
                          transit_2.utc.datetime.ctime() +
                          '\tAirmass: {:.2f}\tHA:{:.2f}'.format(
                              altaz.secz, hourangle))

                    altaz = star_coordinates.transform_to(
                        AltAz(obstime=transit_3, location=observation_site))
                    hourangle = observation_handle1.target_hour_angle(
                        transit_3, star_coordinates)
                    hourangle = 24 * hourangle.degree / 360
                    if hourangle > 12:
                        hourangle -= 24
                    print('Ingress (U.T.C):\t\t\t\t\t' +
                          transit_3.utc.datetime.ctime() +
                          '\tAirmass: {:.2f}\tHA:{:.2f}'.format(
                              altaz.secz, hourangle))

                    altaz = star_coordinates.transform_to(
                        AltAz(obstime=i, location=observation_site))
                    hourangle = observation_handle1.target_hour_angle(
                        i, star_coordinates)
                    hourangle = 24 * hourangle.degree / 360
                    if hourangle > 12:
                        hourangle -= 24
                    print('Mid transit (U.T.C):\t\t\t\t\t' +
                          i.utc.datetime.ctime() +
                          '\tAirmass: {:.2f}\tHA:{:.2f}'.format(
                              altaz.secz, hourangle))

                    altaz = star_coordinates.transform_to(
                        AltAz(obstime=transit_4, location=observation_site))
                    hourangle = observation_handle1.target_hour_angle(
                        transit_4, star_coordinates)
                    hourangle = 24 * hourangle.degree / 360
                    if hourangle > 12:
                        hourangle -= 24
                    print('Egress (U.T.C):\t\t\t\t\t\t' +
                          transit_4.utc.datetime.ctime() +
                          '\tAirmass: {:.2f}\tHA:{:.2f}'.format(
                              altaz.secz, hourangle))

                    altaz = star_coordinates.transform_to(
                        AltAz(obstime=transit_5, location=observation_site))
                    hourangle = observation_handle1.target_hour_angle(
                        transit_5, star_coordinates)
                    hourangle = 24 * hourangle.degree / 360
                    if hourangle > 12:
                        hourangle -= 24
                    print('Egress + 1hr (U.T.C):\t\t\t\t\t' +
                          transit_5.utc.datetime.ctime() +
                          '\tAirmass: {:.2f}\tHA:{:.2f}'.format(
                              altaz.secz, hourangle))

                    altaz = star_coordinates.transform_to(
                        AltAz(obstime=transit_6, location=observation_site))
                    hourangle = observation_handle1.target_hour_angle(
                        transit_6, star_coordinates)
                    hourangle = 24 * hourangle.degree / 360
                    if hourangle > 12:
                        hourangle -= 24
                    print('Egress + 2hr (U.T.C):\t\t\t\t\t' +
                          transit_6.utc.datetime.ctime() +
                          '\tAirmass: {:.2f}\tHA:{:.2f}'.format(
                              altaz.secz, hourangle))
                    print('HJD {} (to check with http://var2.astro.cz/)\n'.
                          format(ii.jd))

                    # append stuff for plots
                    plot_mids.append(i)  # astropy Time
                    plot_names.append(target_table['target'][j])
                    plot_widths.append(target_table['width'][j])

            # Now plot

            plt.close()
            if len(plot_mids) == 0:
                continue
            date_formatter = dates.DateFormatter('%H:%M')
            #ax.xaxis.set_major_formatter(date_formatter)

            # now load dummy transit lightcurves
            xp, yp = np.load('lc.npy')
            xs, ys = np.load('lcs.npy')

            # x = np.linspace(0, 2*np.pi, 400)
            # y = np.sin(x**2)

            subplots_adjust(hspace=0.000)
            number_of_subplots = len(
                plot_names)  # number of targets transiting that night

            time = sun_set + np.linspace(-1, 14,
                                         100) * u.hour  # take us to sunset
            for i, v in enumerate(xrange(number_of_subplots)):
                # exctract params
                width = plot_widths[v]
                name = plot_names[v]
                mid = plot_mids[v]

                # now set up dummy lc plot
                x_tmp = mid + xp * (width /
                                    2) * u.hour  # get right width in hours

                # now set up axis
                v = v + 1
                ax1 = subplot(number_of_subplots, 1, v)
                ax1.xaxis.set_major_formatter(date_formatter)

                if v == 1:
                    ax1.set_title(start)

                # plot transit model
                ax1.plot_date(x_tmp.plot_date, ys, 'k-')

                # plot continuum
                #xx  =time.plot_date
                #xx = [uu for uu in xx if (uu<min(x_tmp.plot_date)) or (uu>max(x_tmp.plot_date))]

                #ax1.plot_date(xx, np.ones(len(xx)),'k--', alpha=0.3)
                ax1.set_xlim(min(time.plot_date), max(time.plot_date))
                #ax1.plot_date(mid.plot_date, 0.5, 'ro')
                plt.setp(ax1.get_xticklabels(), rotation=30, ha='right')
                ax1.set_ylabel(name, rotation=45, labelpad=20)

                twilights = [
                    (sun_set.datetime, 0.0),
                    (twilight_evening_civil.datetime, 0.1),
                    (twilight_evening_nautical.datetime, 0.2),
                    (twilight_evening_astronomical.datetime, 0.3),
                    (twilight_morning_astronomical.datetime, 0.4),
                    (twilight_morning_nautical.datetime, 0.3),
                    (twilight_morning_civil.datetime, 0.2),
                    (sun_rise.datetime, 0.1),
                ]

                for ii, twii in enumerate(twilights[1:], 1):
                    ax1.axvspan(twilights[ii - 1][0],
                                twilights[ii][0],
                                ymin=0,
                                ymax=1,
                                color='grey',
                                alpha=twii[1])

                ax1.grid(alpha=0.5)
                ax1.get_yaxis().set_ticks([])
                if v != number_of_subplots:
                    ax1.get_xaxis().set_ticks([])

            plt.xlabel('Time [U.T.C]')
            #plt.tight_layout()
            #plt.savefig('test.eps',format='eps')
            plt.show()
示例#15
0
    async def get_schedulable_blocks(self) -> List[ObservingBlock]:
        """Returns list of schedulable blocks.

        Returns:
            List of schedulable blocks
        """

        # check
        if self._portal_instrument_type is None:
            raise ValueError("No instrument type for portal set.")

        # get data
        schedulable = await self._portal_get(
            urljoin(self._url, "/api/requestgroups/schedulable_requests/"))

        # get proposal priorities
        data = await self._portal_get(urljoin(self._url, "/api/proposals/"))
        tac_priorities = {p["id"]: p["tac_priority"] for p in data["results"]}

        # loop all request groups
        blocks = []
        for group in schedulable:
            # get base priority, which is tac_priority * ipp_value
            proposal = group["proposal"]
            if proposal not in tac_priorities:
                log.error('Could not find proposal "%s".', proposal)
                continue
            base_priority = group["ipp_value"] * tac_priorities[proposal]

            # loop all requests in group
            for req in group["requests"]:
                # still pending?
                if req["state"] != "PENDING":
                    continue

                # duration
                duration = req["duration"] * u.second

                # time constraints
                time_constraints = [
                    TimeConstraint(Time(wnd["start"]), Time(wnd["end"]))
                    for wnd in req["windows"]
                ]

                # loop configs
                for cfg in req["configurations"]:
                    # get instrument and check, whether we schedule it
                    instrument = cfg["instrument_type"]
                    if instrument.lower(
                    ) != self._portal_instrument_type.lower():
                        continue

                    # target
                    t = cfg["target"]
                    target = SkyCoord(t["ra"] * u.deg,
                                      t["dec"] * u.deg,
                                      frame=t["type"].lower())

                    # constraints
                    c = cfg["constraints"]
                    constraints = []
                    if "max_airmass" in c and c["max_airmass"] is not None:
                        constraints.append(
                            AirmassConstraint(max=c["max_airmass"],
                                              boolean_constraint=False))
                    if "min_lunar_distance" in c and c[
                            "min_lunar_distance"] is not None:
                        constraints.append(
                            MoonSeparationConstraint(
                                min=c["min_lunar_distance"] * u.deg))
                    if "max_lunar_phase" in c and c[
                            "max_lunar_phase"] is not None:
                        constraints.append(
                            MoonIlluminationConstraint(
                                max=c["max_lunar_phase"]))
                        # if max lunar phase <= 0.4 (which would be DARK), we also enforce the sun to be <-18 degrees
                        if c["max_lunar_phase"] <= 0.4:
                            constraints.append(
                                AtNightConstraint.twilight_astronomical())

                    # priority is base_priority times duration in minutes
                    # priority = base_priority * duration.value / 60.
                    priority = base_priority

                    # create block
                    block = ObservingBlock(
                        FixedTarget(target, name=req["id"]),
                        duration,
                        priority,
                        constraints=[*constraints, *time_constraints],
                        configuration={"request": req},
                    )
                    blocks.append(block)

        # return blocks
        return blocks
示例#16
0
def get_transit_observability(site,
                              ra,
                              dec,
                              name,
                              t_mid_0,
                              period,
                              duration,
                              n_transits=100,
                              obs_start_time=Time(
                                  dt.datetime.today().isoformat()),
                              min_altitude=None,
                              oot_duration=30 * u.minute,
                              minokmoonsep=30 * u.deg,
                              max_airmass=None,
                              twilight_limit='nautical'):
    """
    note: barycentric corrections not yet implemented. (could do this myself!)
    -> 16 minutes of imprecision is baked into this observability calculator!

    args:

        site (astroplan.observer.Observer)

        ra, dec (units u.deg), e.g.:
            ra=101.28715533*u.deg, dec=16.71611586*u.deg,
        or can also accept
            ra="17 56 35.51", dec="-29 32 21.5"

        name (str), e.g., "Sirius"

        t_mid_0 (float): in BJD_TDB, preferably (but see note above).

        period (astropy quantity, units time)

        duration (astropy quantity, units time)

        n_transits (int): number of transits forward extrapolated to

        obs_start_time (astropy.Time object): when to start calculation from

        min_altitude (astropy quantity, units deg): 20 degrees is the more
        relevant constraint.

        max_airmass: e.g., 2.5. One of max_airmass or min_altitude is required.

        oot_duration (astropy quantity, units time): with which to brack
        transit observations, to get an OOT baseline.

        twilight_limit: 'astronomical', 'nautical', 'civil' for -18, -12, -6
        deg.
    """

    if (isinstance(ra, u.quantity.Quantity)
            and isinstance(dec, u.quantity.Quantity)):
        target_coord = SkyCoord(ra=ra, dec=dec)
    elif (isinstance(ra, str) and isinstance(dec, str)):
        target_coord = SkyCoord(ra=ra, dec=dec, unit=(u.hourangle, u.deg))
    else:
        raise NotImplementedError

    if (not isinstance(max_airmass, float)
            or isinstance(min_altitude, u.quantity.Quantity)):
        raise NotImplementedError

    target = FixedTarget(coord=target_coord, name=name)

    primary_eclipse_time = Time(t_mid_0, format='jd')

    system = EclipsingSystem(primary_eclipse_time=primary_eclipse_time,
                             orbital_period=period,
                             duration=duration,
                             name=name)

    midtransit_times = system.next_primary_eclipse_time(obs_start_time,
                                                        n_eclipses=n_transits)

    # for the time being, omit any local time constraints.
    if twilight_limit == 'astronomical':
        twilight_constraint = AtNightConstraint.twilight_astronomical()
    elif twilight_limit == 'nautical':
        twilight_constraint = AtNightConstraint.twilight_nautical()
    else:
        raise NotImplementedError('civil twilight is janky.')

    constraints = [
        twilight_constraint,
        AltitudeConstraint(min=min_altitude),
        AirmassConstraint(max=max_airmass),
        MoonSeparationConstraint(min=minokmoonsep)
    ]

    # observable just at midtime (bottom)
    b = is_event_observable(constraints, site, target, times=midtransit_times)

    # observable full transits (ingress, bottom, egress)
    ing_egr = system.next_primary_ingress_egress_time(obs_start_time,
                                                      n_eclipses=n_transits)

    ibe = is_event_observable(constraints,
                              site,
                              target,
                              times_ingress_egress=ing_egr)

    # get moon separation over each transit. take minimum moon sep at
    # ing/tmid/egr as the moon separation.
    moon_tmid = get_moon(midtransit_times, location=site.location)
    moon_separation_tmid = moon_tmid.separation(target_coord)

    moon_ing = get_moon(ing_egr[:, 0], location=site.location)
    moon_separation_ing = moon_ing.separation(target_coord)

    moon_egr = get_moon(ing_egr[:, 1], location=site.location)
    moon_separation_egr = moon_egr.separation(target_coord)

    moon_separation = np.round(
        np.array(
            [moon_separation_tmid, moon_separation_ing,
             moon_separation_egr]).min(axis=0), 0).astype(int)

    moon_illumination = np.round(
        100 * moon.moon_illumination(midtransit_times), 0).astype(int)

    # completely observable transits (OOT, ingress, bottom, egress, OOT)
    oot_ing_egr = np.concatenate(
        (np.array(ing_egr[:, 0] - oot_duration)[:, None],
         np.array(ing_egr[:, 1] + oot_duration)[:, None]),
        axis=1)

    oibeo = is_event_observable(constraints,
                                site,
                                target,
                                times_ingress_egress=oot_ing_egr)

    ing_tmid_egr = np.concatenate(
        (np.array(ing_egr[:, 0])[:, None], np.array(midtransit_times)[:, None],
         np.array(ing_egr[:, 1])[:, None]),
        axis=1)

    return ibe, oibeo, ing_tmid_egr, moon_separation, moon_illumination
示例#17
0
# Create astroplan.FixedTarget objects for each one in the table.
from astropy.coordinates import SkyCoord
import astropy.units as u
targets = [(FixedTarget(coord=ra=ra*u.deg, dec=dec*u.deg), name=name)
            for name, ra, dec in target_table]

# Build a bulleted list of constrains:
# 1. Only observe btwn altitudes of 10-80 deg, with AltitudeConstraint class.
# 2. Put an upper limit on the airmass of each target with AirmassConstraint
# class.
# 3. Use the AtNightConstraint class too, to see things at night. We can define 
# night to be "between civil twilights" with the class method twilight_civil,
# but there are also other ways to define the observing window.

from astroplan import (AltitudeConstraint, AirmassConstraint,
        AtNightConstraint)
constraints = [AltitudeConstraint(10*u.deg, 80*u.deg), AirmassConstraint(5),
        AtNightConstraint.twilight_civil()]

from astroplan import is_observable, is_always_observable, months_observable
# Are targets *ever* observable in the time range?
ever_observable = is_observable(constraints, subaru, targets,
        time_range=time_range)
# Are targets *always* observable in the time range?
always_observable = is_always_observable(constraints, subaru, targets,
        time_range=time_range)
# During what months are the targets ever observable?
best_months = months_observable(constraints, subaru, targets)


def get_event_observability(
    eventclass,
    site, ra, dec, name, t_mid_0, period, duration, n_transits=100,
    obs_start_time=Time(dt.datetime.today().isoformat()),
    min_altitude = None,
    oot_duration = 30*u.minute,
    minokmoonsep = 30*u.deg,
    max_airmass = None,
    twilight_limit = 'nautical'):
    """
    note: barycentric corrections not yet implemented. (could do this myself!)
    -> 16 minutes of imprecision is baked into this observability calculator!

    args:

        eventclass: e.g., "OIBE". Function does NOT return longer events.

        site (astroplan.observer.Observer)

        ra, dec (units u.deg), e.g.:
            ra=101.28715533*u.deg, dec=16.71611586*u.deg,
        or can also accept
            ra="17 56 35.51", dec="-29 32 21.5"

        name (str), e.g., "Sirius"

        t_mid_0 (float): in BJD_TDB, preferably (but see note above).

        period (astropy quantity, units time)

        duration (astropy quantity, units time)

        n_transits (int): number of transits forward extrapolated to

        obs_start_time (astropy.Time object): when to start calculation from

        min_altitude (astropy quantity, units deg): 20 degrees is the more
        relevant constraint.

        max_airmass: e.g., 2.5. One of max_airmass or min_altitude is required.

        oot_duration (astropy quantity, units time): with which to brack
        transit observations, to get an OOT baseline.

        twilight_limit: 'astronomical', 'nautical', 'civil' for -18, -12, -6
        deg.
    """
    if eventclass not in [
        'OIBEO', 'OIBE', 'IBEO', 'IBE', 'BEO', 'OIB', 'OI', 'EO'
    ]:
        raise AssertionError

    if (isinstance(ra, u.quantity.Quantity) and
        isinstance(dec, u.quantity.Quantity)
    ):
        target_coord = SkyCoord(ra=ra, dec=dec)
    elif (isinstance(ra, str) and
          isinstance(dec, str)
    ):
        target_coord = SkyCoord(ra=ra, dec=dec, unit=(u.hourangle, u.deg))
    else:
        raise NotImplementedError

    if (
        not isinstance(max_airmass, float)
        or isinstance(min_altitude, u.quantity.Quantity)
    ):
        raise NotImplementedError

    target = FixedTarget(coord=target_coord, name=name)

    primary_eclipse_time = Time(t_mid_0, format='jd')

    system = EclipsingSystem(primary_eclipse_time=primary_eclipse_time,
                             orbital_period=period, duration=duration,
                             name=name)

    midtransit_times = system.next_primary_eclipse_time(
        obs_start_time, n_eclipses=n_transits)

    # for the time being, omit any local time constraints.
    if twilight_limit == 'astronomical':
        twilight_constraint = AtNightConstraint.twilight_astronomical()
    elif twilight_limit == 'nautical':
        twilight_constraint = AtNightConstraint.twilight_nautical()
    else:
        raise NotImplementedError('civil twilight is janky.')

    constraints = [twilight_constraint,
                   AltitudeConstraint(min=min_altitude),
                   AirmassConstraint(max=max_airmass),
                   MoonSeparationConstraint(min=minokmoonsep)]

    # tabulate ingress and egress times.
    ing_egr = system.next_primary_ingress_egress_time(
        obs_start_time, n_eclipses=n_transits
    )

    oibeo_window = np.concatenate(
        (np.array(ing_egr[:,0] - oot_duration)[:,None],
         np.array(ing_egr[:,1] + oot_duration)[:,None]),
        axis=1)
    oibe_window = np.concatenate(
        (np.array(ing_egr[:,0] - oot_duration)[:,None],
         np.array(ing_egr[:,1])[:,None]),
        axis=1)
    ibeo_window = np.concatenate(
        (np.array(ing_egr[:,0])[:,None],
         np.array(ing_egr[:,1] + oot_duration)[:,None]),
        axis=1)
    oib_window = np.concatenate(
        (np.array(ing_egr[:,0] - oot_duration)[:,None],
         np.array(midtransit_times)[:,None]),
        axis=1)
    beo_window = np.concatenate(
        (np.array(midtransit_times)[:,None],
         np.array(ing_egr[:,1] + oot_duration)[:,None]),
        axis=1)
    ibe_window = ing_egr
    oi_window = np.concatenate(
        (np.array(ing_egr[:,0] - oot_duration)[:,None],
        np.array(ing_egr[:,0])[:,None]),
        axis=1)
    eo_window = np.concatenate(
        (np.array(ing_egr[:,1])[:,None],
        np.array(ing_egr[:,1] + oot_duration)[:,None]),
        axis=1)

    keys = ['oibeo','oibe','ibeo','oib','beo','ibe','oi','eo']
    windows = [oibeo_window, oibe_window, ibeo_window,
               oib_window, beo_window, ibe_window, oi_window, eo_window]
    is_obs_dict = {}
    for key, window in zip(keys, windows):
        is_obs_dict[key] = np.array(
            is_event_observable(constraints, site, target,
                                times_ingress_egress=window)
        ).flatten()

    is_obs_df = pd.DataFrame(is_obs_dict)

    is_obs_df['ing'] = ing_egr[:,0]
    is_obs_df['egr'] = ing_egr[:,1]
    is_obs_df['isoing'] = Time(ing_egr[:,0], format='iso')
    is_obs_df['isoegr'] = Time(ing_egr[:,1], format='iso')

    # this function returns the observable events that are LONGEST. e.g.,
    # during an OIBEO transit you COULD observe just OIB, but why would you?

    if eventclass == 'OIBEO':
        event_ind = np.array(is_obs_df[eventclass.lower()])[None,:]
    elif eventclass in ['IBEO', 'OIBE']:
        event_ind = np.array(
            is_obs_df[eventclass.lower()] & ~is_obs_df['oibeo']
        )[None,:]
    elif eventclass in ['IBE', 'OIB', 'BEO']:
        event_ind = np.array(
            is_obs_df[eventclass.lower()]
            & ~is_obs_df['oibeo']
            & ~is_obs_df['oibe']
            & ~is_obs_df['ibeo']
        )[None,:]
    elif eventclass in ['OI', 'EO']:
        event_ind = np.array(
            is_obs_df[eventclass.lower()]
            & ~is_obs_df['oibeo']
            & ~is_obs_df['oibe']
            & ~is_obs_df['ibeo']
            & ~is_obs_df['oib']
            & ~is_obs_df['ibe']
            & ~is_obs_df['beo']
        )[None,:]

    # get moon separation over each transit. take minimum moon sep at
    # ing/tmid/egr as the moon separation.
    moon_tmid = get_moon(midtransit_times, location=site.location)
    moon_separation_tmid = moon_tmid.separation(target_coord)

    moon_ing = get_moon(ing_egr[:,0], location=site.location)
    moon_separation_ing = moon_ing.separation(target_coord)

    moon_egr = get_moon(ing_egr[:,1], location=site.location)
    moon_separation_egr = moon_egr.separation(target_coord)

    moon_separation = np.round(np.array(
        [moon_separation_tmid, moon_separation_ing,
         moon_separation_egr]).min(axis=0),0).astype(int)

    moon_illumination = np.round(
        100*moon.moon_illumination(midtransit_times),0).astype(int)

    # completely observable transits (OOT, ingress, bottom, egress, OOT)
    oibeo = is_event_observable(constraints, site, target,
                                times_ingress_egress=oibeo_window)

    ing_tmid_egr = np.concatenate(
        (np.array(ing_egr[:,0])[:,None],
         np.array(midtransit_times)[:,None],
         np.array(ing_egr[:,1])[:,None]),
        axis=1)

    target_window = np.array(windows)[
        int(np.argwhere(np.array(keys)==eventclass.lower())), :, :
    ]

    return (
        event_ind, oibeo, ing_tmid_egr, target_window,
        moon_separation, moon_illumination
    )
示例#19
0
params.ecc = 0
params.a = float(((G * M_star * (params.per * u.day)**2) /
                  (4 * np.pi**2))**(1 / 3) / R_star)

from astroplan import time_grid_from_range, observability_table

n_objects_per_night = int(sys.argv[-1])
print(n_objects_per_night)
airmass_cutoff = 3.5
fraction_cloudy = 0.3
n_years = 1
n_trials = 15

constraints = [
    AtNightConstraint.twilight_nautical(),
    AirmassConstraint(max=airmass_cutoff)
]

start_time = Time('2020-01-01 08:00')  # near local midnight
end_time = Time('2021-01-01 08:00')  # near local midnight

n_transits = []

for trial in range(n_trials):
    target_inds_observed = set([])

    obs_database = {
        name: dict(times=[], fluxes=[], model=[], transit=False)
        for name in table['spc']
    }
示例#20
0
targets = [
    FixedTarget(coord=SkyCoord(ra=ra * u.deg, dec=dec * u.deg), name=name)
    for name, ra, dec in target_table
]

from astroplan import (AltitudeConstraint, AirmassConstraint,
                       AtNightConstraint)

for target in targets:
    print("Target: ", target.name)
    #if False:
    #print("Posang: ", target.posang)

constraints = [
    AltitudeConstraint(10 * u.deg, 80 * u.deg),
    AirmassConstraint(5),
    AtNightConstraint.twilight_civil()
]

#from astroplan import is_observable, is_always_observable, months_observable
## Are targets *ever* observable in the time range?
#ever_observable = is_observable(constraints, subaru, targets, time_range=time_range)

## Are targets *always* observable in the time range?
#always_observable = is_always_observable(constraints, subaru, targets, time_range=time_range)

## During what months are the targets ever observable?
## best_months = months_observable(constraints, subaru, targets)

#import numpy as np
#observability_table = Table()
示例#21
0
def observability(cand=[],
                  site='VLT',
                  time=['2017-09-01T00:00:00.00', '2018-03-01T00:00:00.00'],
                  airmass=1.3):
    """
    cand is class object with parameters: name, ra, dec
    """
    # set observation site
    if site == 'VLT':
        if 0:
            longitude = '-70d24m12.000s'
            latitude = '-24d37m34.000s'
            elevation = 2635 * u.m
            vlt = EarthLocation.from_geodetic(longitude, latitude, elevation)
            observer = astroplan.Observer(
                name='VLT',
                location=vlt,
                pressure=0.750 * u.bar,
                relative_humidity=0.11,
                temperature=0 * u.deg_C,
                timezone=timezone('America/Santiago'),
                description="Very Large Telescope, Cerro Paranal")
            eso = astroplan.Observer.at_site('eso')
        else:
            observer = Observer.at_site('Cerro Paranal')

    if site == 'MagE':
        observer = Observer.at_site('las campanas observatory')
    if site == 'keck':
        observer = Observer.at_site('keck')

    print(observer)
    # set time range constrains

    if isinstance(time, str):
        # all year
        if len(time) == 4:
            timerange = 'period'
            time_range = Time(time + "-01-01T00:00:00.00",
                              time + "-12-31T23:59:00.00")
        else:
            timerange = 'onenight'
            time = Time(time)

    elif isinstance(time, list):
        if len(time) == 2:
            timerange = 'period'
            print(Time(['2017-01-03']), time)
            time_range = Time(time)
        else:
            timerange = 'onenight'
            time = Time(time[0])

    if timerange == 'onenight':
        # calculate sunset and sunrise
        sunset = observer.sun_set_time(time, which='nearest')
        print('Sunset at ', sunset.iso)
        sunrise = observer.sun_rise_time(time, which='nearest')
        print('Sunrise at ', sunrise.iso)
        time_range = Time([sunset, sunrise])

        # set time array during the night
        time = time_range[0] + (time_range[1] - time_range[0]) * np.linspace(
            0, 1, 55)

    print(time)
    # set visibility constrains
    # constraints = [AirmassConstraint(1.5), AtNightConstraint.twilight_civil()]
    print(airmass)
    constraints = [
        AirmassConstraint(airmass),
        AtNightConstraint.twilight_civil()
    ]

    # set parameters of calculations
    read_vis = 0
    if read_vis == 0:
        f_vis = open('DR12_cand_vis_temp.dat', 'w')
    month_detalied = 1
    show_moon = 0
    airmass_plot = 0
    sky_plot = 0
    if airmass_plot == 1:
        f, ax_air = plt.subplots()
    if sky_plot == 1:
        f, ax_sky = plt.subplots()

    targets = []

    if show_moon == 1:
        print(observer.moon_altaz(time).alt)
        print(observer.moon_altaz(time).az)
        # moon = SkyCoord(alt = observer.moon_altaz(time).alt, az = observer.moon_altaz(time).az, obstime = time, frame = 'altaz', location = observer.location)
        # print(moon.icrs)

    for i, can in enumerate(cand):

        print(can.name)
        # calculate target coordinates
        coordinates = SkyCoord(float(can.ra) * u.deg,
                               float(can.dec) * u.deg,
                               frame='icrs')
        #print(can.ra, can.dec)
        #print(coordinates.to_string('hmsdms'))
        target = FixedTarget(name=can.name, coord=coordinates)
        targets.append(target)

        # print(observer.target_is_up(time, targets[i]))
        # calculate airmass
        if timerange == 'onenight':
            if sky_plot == 1:
                plot_sky(target, observer, time)

            airmass = observer.altaz(time, target).secz
            if airmass_plot == 1:
                plot_airmass(target, observer, time, ax=ax)

            air_min = 1000
            k_min = -1
            for k, a in enumerate(airmass):
                if 0 < a < air_min:
                    air_min = a
                    k_min = k
            print(air_min, time[k_min].iso)

            if k_min > -1 and show_moon == 1:
                moon = SkyCoord(alt=observer.moon_altaz(time[k_min]).alt,
                                az=observer.moon_altaz(time[k_min]).az,
                                obstime=time[k_min],
                                frame='altaz',
                                location=observer.location)
                can.moon_sep = Angle(moon.separation(
                    target.coord)).to_string(fields=1)
                print(can.moon_sep)

            can.airmass = air_min
            can.time = time[k_min].iso

        # ever_observable = astroplan.is_observable(constraints, observer, targets, time_range=time_range)
        # print(ever_observable)

        if month_detalied == 1:
            tim = []
            months = [
                '2017-10-01', '2017-11-01', '2017-12-01', '2018-01-01',
                '2018-02-01', '2018-03-01', '2018-04-01'
            ]
            #for l in range(int(str(time_range[0])[5:7]), int(str(time_range[1])[5:7]) + 1):
            for l in range(len(months) - 1):
                if 0:
                    start = "2017-" + "{0:0>2}".format(l) + "-01T00:00"
                    end = "2017-" + "{0:0>2}".format(l + 1) + "-01T00:00"
                    if l == 12:
                        end = "2018-01-01T00:00"
                else:
                    start = months[l]
                    end = months[l + 1]

                time_range_temp = Time([start, end])
                table = astroplan.observability_table(
                    constraints,
                    observer, [target],
                    time_range=time_range_temp)
                tim.append(table[0][3])

            # print(tim, max(tim), tim.index(max(tim)))
            print(tim)
            can.time = max(tim)

            if max(tim) != 0:
                if 0:
                    can.month = str(calendar.month_name[tim.index(max(tim)) +
                                                        1])[:3]
                else:
                    can.month = tim.index(max(tim))
                can.up = 'True'
            else:
                can.up = 'False'
                can.month = '---'

            print(can.up, can.month, can.time)

    if month_detalied == 0:
        table = astroplan.observability_table(constraints,
                                              observer,
                                              targets,
                                              time_range=time_range)
        print(table)
        for i, can in enumerate(cand):
            can.up = table[i][1]
            can.time = table[i][3]

    # print(table[k][0], table[k][1], table[k][2], table[k][3])
    #table.write('DR12_candidates_obs.dat', format='ascii')
    # f_out.write(table)

    if sky_plot == 1:
        plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
        plt.show()