示例#1
0
def cirs_to_icrs(cirs_coo, icrs_frame):
    srepr = cirs_coo.represent_as(SphericalRepresentation)
    cirs_ra = srepr.lon.to_value(u.radian)
    cirs_dec = srepr.lat.to_value(u.radian)

    # set up the astrometry context for ICRS<->cirs and then convert to
    # astrometric coordinate direction
    jd1, jd2 = get_jd12(cirs_coo.obstime, 'tdb')
    x, y, s = get_cip(jd1, jd2)
    earth_pv, earth_heliocentric = prepare_earth_position_vel(cirs_coo.obstime)
    astrom = erfa.apci(jd1, jd2, earth_pv, earth_heliocentric, x, y, s)
    i_ra, i_dec = aticq(cirs_ra, cirs_dec, astrom)

    if cirs_coo.data.get_name() == 'unitspherical' or cirs_coo.data.to_cartesian().x.unit == u.one:
        # if no distance, just use the coordinate direction to yield the
        # infinite-distance/no parallax answer
        newrep = UnitSphericalRepresentation(lat=u.Quantity(i_dec, u.radian, copy=False),
                                             lon=u.Quantity(i_ra, u.radian, copy=False),
                                             copy=False)
    else:
        # When there is a distance, apply the parallax/offset to the SSB as the
        # last step - ensures round-tripping with the icrs_to_cirs transform

        # the distance in intermedrep is *not* a real distance as it does not
        # include the offset back to the SSB
        intermedrep = SphericalRepresentation(lat=u.Quantity(i_dec, u.radian, copy=False),
                                              lon=u.Quantity(i_ra, u.radian, copy=False),
                                              distance=srepr.distance,
                                              copy=False)

        astrom_eb = CartesianRepresentation(astrom['eb'], unit=u.au,
                                            xyz_axis=-1, copy=False)
        newrep = intermedrep + astrom_eb

    return icrs_frame.realize_frame(newrep)
示例#2
0
def icrs_to_cirs(icrs_coo, cirs_frame):
    # first set up the astrometry context for ICRS<->CIRS
    jd1, jd2 = get_jd12(cirs_frame.obstime, 'tt')
    x, y, s = get_cip(jd1, jd2)
    earth_pv, earth_heliocentric = prepare_earth_position_vel(
        cirs_frame.obstime)
    # erfa.apci requests TDB but TT can be used instead of TDB without any significant impact on accuracy
    astrom = erfa.apci(jd1, jd2, earth_pv, earth_heliocentric, x, y, s)

    if icrs_coo.data.get_name(
    ) == 'unitspherical' or icrs_coo.data.to_cartesian().x.unit == u.one:
        # if no distance, just do the infinite-distance/no parallax calculation
        usrepr = icrs_coo.represent_as(UnitSphericalRepresentation)
        i_ra = usrepr.lon.to_value(u.radian)
        i_dec = usrepr.lat.to_value(u.radian)
        cirs_ra, cirs_dec = atciqz(i_ra, i_dec, astrom)

        newrep = UnitSphericalRepresentation(lat=u.Quantity(cirs_dec,
                                                            u.radian,
                                                            copy=False),
                                             lon=u.Quantity(cirs_ra,
                                                            u.radian,
                                                            copy=False),
                                             copy=False)
    else:
        # When there is a distance,  we first offset for parallax to get the
        # astrometric coordinate direction and *then* run the ERFA transform for
        # no parallax/PM. This ensures reversibility and is more sensible for
        # inside solar system objects
        astrom_eb = CartesianRepresentation(astrom['eb'],
                                            unit=u.au,
                                            xyz_axis=-1,
                                            copy=False)
        newcart = icrs_coo.cartesian - astrom_eb

        srepr = newcart.represent_as(SphericalRepresentation)
        i_ra = srepr.lon.to_value(u.radian)
        i_dec = srepr.lat.to_value(u.radian)
        cirs_ra, cirs_dec = atciqz(i_ra, i_dec, astrom)

        newrep = SphericalRepresentation(lat=u.Quantity(cirs_dec,
                                                        u.radian,
                                                        copy=False),
                                         lon=u.Quantity(cirs_ra,
                                                        u.radian,
                                                        copy=False),
                                         distance=srepr.distance,
                                         copy=False)

    return cirs_frame.realize_frame(newrep)
示例#3
0
def cirs_to_icrs(cirs_coo, icrs_frame):
    srepr = cirs_coo.represent_as(SphericalRepresentation)
    cirs_ra = srepr.lon.to_value(u.radian)
    cirs_dec = srepr.lat.to_value(u.radian)

    # set up the astrometry context for ICRS<->cirs and then convert to
    # astrometric coordinate direction
    jd1, jd2 = get_jd12(cirs_coo.obstime, 'tt')
    x, y, s = get_cip(jd1, jd2)
    earth_pv, earth_heliocentric = prepare_earth_position_vel(cirs_coo.obstime)
    # erfa.apci requests TDB but TT can be used instead of TDB without any significant impact on accuracy
    astrom = erfa.apci(jd1, jd2, earth_pv, earth_heliocentric, x, y, s)
    i_ra, i_dec = aticq(cirs_ra, cirs_dec, astrom)

    if cirs_coo.data.get_name(
    ) == 'unitspherical' or cirs_coo.data.to_cartesian().x.unit == u.one:
        # if no distance, just use the coordinate direction to yield the
        # infinite-distance/no parallax answer
        newrep = UnitSphericalRepresentation(lat=u.Quantity(i_dec,
                                                            u.radian,
                                                            copy=False),
                                             lon=u.Quantity(i_ra,
                                                            u.radian,
                                                            copy=False),
                                             copy=False)
    else:
        # When there is a distance, apply the parallax/offset to the SSB as the
        # last step - ensures round-tripping with the icrs_to_cirs transform

        # the distance in intermedrep is *not* a real distance as it does not
        # include the offset back to the SSB
        intermedrep = SphericalRepresentation(lat=u.Quantity(i_dec,
                                                             u.radian,
                                                             copy=False),
                                              lon=u.Quantity(i_ra,
                                                             u.radian,
                                                             copy=False),
                                              distance=srepr.distance,
                                              copy=False)

        astrom_eb = CartesianRepresentation(astrom['eb'],
                                            unit=u.au,
                                            xyz_axis=-1,
                                            copy=False)
        newrep = intermedrep + astrom_eb

    return icrs_frame.realize_frame(newrep)
示例#4
0
def icrs_to_cirs(icrs_coo, cirs_frame):
    # first set up the astrometry context for ICRS<->CIRS
    jd1, jd2 = get_jd12(cirs_frame.obstime, 'tdb')
    x, y, s = get_cip(jd1, jd2)
    earth_pv, earth_heliocentric = prepare_earth_position_vel(cirs_frame.obstime)
    astrom = erfa.apci(jd1, jd2, earth_pv, earth_heliocentric, x, y, s)

    if icrs_coo.data.get_name() == 'unitspherical' or icrs_coo.data.to_cartesian().x.unit == u.one:
        # if no distance, just do the infinite-distance/no parallax calculation
        usrepr = icrs_coo.represent_as(UnitSphericalRepresentation)
        i_ra = usrepr.lon.to_value(u.radian)
        i_dec = usrepr.lat.to_value(u.radian)
        cirs_ra, cirs_dec = atciqz(i_ra, i_dec, astrom)

        newrep = UnitSphericalRepresentation(lat=u.Quantity(cirs_dec, u.radian, copy=False),
                                             lon=u.Quantity(cirs_ra, u.radian, copy=False),
                                             copy=False)
    else:
        # When there is a distance,  we first offset for parallax to get the
        # astrometric coordinate direction and *then* run the ERFA transform for
        # no parallax/PM. This ensures reversibility and is more sensible for
        # inside solar system objects
        astrom_eb = CartesianRepresentation(astrom['eb'], unit=u.au,
                                            xyz_axis=-1, copy=False)
        newcart = icrs_coo.cartesian - astrom_eb

        srepr = newcart.represent_as(SphericalRepresentation)
        i_ra = srepr.lon.to_value(u.radian)
        i_dec = srepr.lat.to_value(u.radian)
        cirs_ra, cirs_dec = atciqz(i_ra, i_dec, astrom)

        newrep = SphericalRepresentation(lat=u.Quantity(cirs_dec, u.radian, copy=False),
                                         lon=u.Quantity(cirs_ra, u.radian, copy=False),
                                         distance=srepr.distance, copy=False)

    return cirs_frame.realize_frame(newrep)