示例#1
0
def convolve_surface_brightness(sb, unit_values, redshift, beam_FWHM_arcsec):
    kpc_per_arcsec = _cosmo.kpc_proper_per_arcmin(redshift).to(_u.kpc /
                                                               _u.arcsec)
    # beam information
    sigma_beam_arcsec = beam_FWHM_arcsec / 2.355
    area_beam_kpc2 = (_np.pi * (sigma_beam_arcsec * kpc_per_arcsec)**2).to(
        _u.kpc**2)
    stddev = ((sigma_beam_arcsec * kpc_per_arcsec) / unit_values.length).si
    beam_kernel = _Gaussian2DKernel(stddev)

    return _convolve(sb.to(_u.Jy), beam_kernel, boundary="extend") * _u.Jy
示例#2
0
def get_convolved_flux_density(flux_density, redshift, beam_FWHM_arcsec):

    kpc_per_arcsec = _cosmo.kpc_proper_per_arcmin(redshift).to(_u.kpc /
                                                               _u.arcsec)

    # beam information
    sigma_beam_arcsec = beam_FWHM_arcsec / 2.355
    area_beam_kpc2 = (_np.pi * (sigma_beam_arcsec * kpc_per_arcsec)**2).to(
        _u.kpc**2)

    beam_kernel = _Gaussian2DKernel(
        (sigma_beam_arcsec * kpc_per_arcsec).to(_u.kpc).value)

    flux_density = _convolve(
        flux_density.to(_u.Jy), beam_kernel, boundary='extend') * _u.Jy

    return flux_density
示例#3
0
def clamp_tracers(simulation_data,
                  ntracers,
                  tracer_threshold=1e-7,
                  tracer_effective_zero=1e-20):
    # smooth the tracer data with a 2d box kernel of width 3
    box2d = _Box2DKernel(3)
    radio_combined_tracers = _convolve(combine_tracers(simulation_data,
                                                       ntracers),
                                       box2d,
                                       boundary="extend")
    radio_tracer_mask = _np.where(radio_combined_tracers > tracer_threshold,
                                  1.0, tracer_effective_zero)

    # create new tracer array that is clamped to tracer values
    clamped_tracers = radio_combined_tracers.copy()
    clamped_tracers[
        clamped_tracers <= tracer_threshold] = tracer_effective_zero

    return (radio_tracer_mask, clamped_tracers, radio_combined_tracers)
示例#4
0
def regrid_3d_sb(
    *,
    sim_data,
    sb,
    pixel_size=1.8 * _u.arcsec,
    beam_fwhm=5 * _u.arcsec,
    z=0.05,
):
    """
    Grids & smooths the surface brightness, for a given redshift,
    pixel size, and observing beam information (currently assumes observing
    beam is a circular 2D Gaussian with constant & FWHM)

    Parameters
    ---------
    sim_data : HDF5 File
        The simulation data file
    sb : u.mJy / u.beam
        Surface brightness, in units of mJy per beam
    pixel_size : u.arcsec
        The gridded pixel size, in arcseconds
    beam_fwhm : u.arcsec
        The 2D observing beam Gaussian fwhm, in arcseconds
    z : float
        The redshift this sourced is observed at

    Returns
    -------
    grid_x : u.arcsec
        X grid in arcseconds
    grid_y : u.arsec
        Y grid in arcseconds
    sb : u.mJy / u.beam
        Gridded and smoothed surface brightness, in units of mJy per beam
    """
    fwhm_to_sigma = 1 / (8 * _np.log(2))**0.5
    beam_sigma = beam_fwhm * fwhm_to_sigma
    omega_beam = 2 * _np.pi * beam_sigma**2  # Area for a circular 2D gaussian

    z = 0.05
    kpc_per_arcsec = _cosmo.kpc_proper_per_arcmin(z)

    # Create our grid
    grid_res = pixel_size.to(_u.arcsec)
    x_min = (sim_data.mx[0] * sim_data.unit_length / kpc_per_arcsec).to(
        _u.arcsec)
    x_max = (sim_data.mx[-1] * sim_data.unit_length / kpc_per_arcsec).to(
        _u.arcsec)
    y_min = (sim_data.mz[0] * sim_data.unit_length / kpc_per_arcsec).to(
        _u.arcsec)
    y_max = (sim_data.mz[-1] * sim_data.unit_length / kpc_per_arcsec).to(
        _u.arcsec)

    new_x = _np.arange(x_min.value, x_max.value,
                       grid_res.value)  # in arcsec now
    new_y = _np.arange(y_min.value, y_max.value,
                       grid_res.value)  # in arcsec now
    grid_x, grid_y = _np.meshgrid(new_x, new_y, indexing="xy")  # in arcsec

    old_x = ((sim_data.mx * sim_data.unit_length / kpc_per_arcsec).to(
        _u.arcsec).value)  # in arcsec
    old_z = ((sim_data.mz * sim_data.unit_length / kpc_per_arcsec).to(
        _u.arcsec).value)  # in arcsec

    # Regrid data
    # everything is in arcsec
    # save our units first, to add them back after
    sb_units = sb.unit
    sb_gridded = (_scipy.interpolate.interpn(
        points=(old_z, old_x),
        values=sb.value,
        xi=(grid_y, grid_x),
        method="linear",
        bounds_error=False,
        fill_value=0,
    ) * sb_units)

    # Smooth data
    stddev = beam_sigma / pixel_size
    kernel = _Gaussian2DKernel(x_stddev=stddev.value)
    sb_units = sb_gridded.unit
    sb_smoothed = _convolve(sb_gridded.value, kernel) * sb_units

    # Convert from per sr to per beam
    sb_final = sb_smoothed.to(_u.mJy / _u.beam,
                              equivalencies=_u.beam_angular_area(omega_beam))

    return (grid_x * _u.arcsec, grid_y * _u.arcsec, sb_final)
示例#5
0
def get_luminosity_old(
    simulation_data,
    unit_density,
    unit_length,
    unit_time,
    redshift,
    beam_FWHM_arcsec,
    ntracers,
    q=2.2,
    gamma_c=4.0 / 3.0,
    eta=0.1,
    freq=1.4 * _u.GHz,
    prs_scale=1e-11 * _u.Pa,
    vol_scale=(1 * _u.kpc)**3,
    alpha=0.6,
    tracer_threshold=1.0e-7,
    tracer_effective_zero=1e-10,
    radio_cell_volumes=None,
    radio_cell_areas=None,
    L0=None,
    calculate_luminosity=True,
    convolve_flux=False,
):

    # units
    unit_mass = (unit_density * (unit_length**3)).to(_u.kg)
    unit_pressure = unit_mass / (unit_length * unit_time**2)

    # distance information and conversions
    Dlumin = _cosmo.luminosity_distance(redshift)
    kpc_per_arcsec = _cosmo.kpc_proper_per_arcmin(redshift).to(_u.kpc /
                                                               _u.arcsec)

    # simulation data
    if radio_cell_volumes is None:
        radio_cell_volumes = _ps.calculate_cell_volume(simulation_data)
    if radio_cell_areas is None:
        radio_cell_areas = _ps.calculate_cell_area(simulation_data)

    # in physical units
    radio_cell_areas_physical = radio_cell_areas * unit_length**2
    radio_cell_volumes_physical = radio_cell_volumes * unit_length**3

    # pressure in physical units
    radio_prs_scaled = simulation_data.prs * unit_pressure

    # luminosity scaling
    if L0 is None:
        L0 = get_L0(q, gamma_c, eta, freq=freq, prs=prs_scale, vol=vol_scale)

    # beam information
    sigma_beam_arcsec = beam_FWHM_arcsec / 2.355
    area_beam_kpc2 = (_np.pi * (sigma_beam_arcsec * kpc_per_arcsec)**2).to(
        _u.kpc**2)

    # n beams per cell
    n_beams_per_cell = (radio_cell_areas_physical / area_beam_kpc2).si

    (radio_tracer_mask, clamped_tracers,
     radio_combined_tracers) = clamp_tracers(simulation_data, ntracers,
                                             tracer_threshold,
                                             tracer_effective_zero)

    radio_luminosity_tracer_weighted = None
    if calculate_luminosity is True:
        radio_luminosity = (L0 *
                            (radio_prs_scaled / prs_scale)**((q + 5.0) / 4.0) *
                            radio_cell_volumes_physical / vol_scale).to(_u.W /
                                                                        _u.Hz)
        radio_luminosity_tracer_weighted = (radio_luminosity *
                                            radio_tracer_mask *
                                            clamped_tracers)

    flux_const_term = (L0 / (4 * _np.pi *
                             (Dlumin**2))) * ((1 + redshift)**(1 + alpha))
    flux_prs_term = (radio_prs_scaled / prs_scale)**((q + 5.0) / 4.0)
    flux_vol_term = radio_cell_volumes_physical / vol_scale
    flux_beam_term = 1 / n_beams_per_cell
    flux_density = (flux_const_term * flux_prs_term * flux_vol_term *
                    flux_beam_term).to(_u.Jy)
    flux_density_tracer_weighted = flux_density * radio_tracer_mask * clamped_tracers

    if convolve_flux is True:
        beam_kernel = _Gaussian2DKernel(
            (sigma_beam_arcsec * kpc_per_arcsec).to(_u.kpc).value)
        flux_density_tracer_weighted = (
            _convolve(flux_density_tracer_weighted.to(_u.Jy),
                      beam_kernel,
                      boundary="extend") * _u.Jy)

    return (radio_luminosity_tracer_weighted, flux_density_tracer_weighted)
示例#6
0
 def convolve(self, fitscls, mode):
     if mode == 'image':
         fitscls.data = _convolve(fitscls.data, self.beam_i)
     elif mode == 'source':
         fitscls.data = _convolve(fitscls.data, self.beam_s)
示例#7
0
 def convolve(self, fitscls, mode):
     if mode == 'image':
         fitscls.data = _convolve(fitscls.data, self.beam_i)
     elif mode == 'source':
         fitscls.data = _convolve(fitscls.data, self.beam_s)