示例#1
0
def test_extract(tmpdir):
    hdulist = HDUList()

    image = ImageHDU(np.random.random((25, 25)))
    hdulist.append(image)

    tree = {
        'some_words': 'These are some words',
        'nested': {
            'a': 100,
            'b': 42
        },
        'list': [x for x in range(10)],
        'image': image.data
    }

    asdf_in_fits = str(tmpdir.join('asdf.fits'))
    with AsdfInFits(hdulist, tree) as aif:
        aif.write_to(asdf_in_fits)

    pure_asdf = str(tmpdir.join('extract.asdf'))
    extract.extract_file(asdf_in_fits, pure_asdf)

    assert os.path.exists(pure_asdf)

    with asdf.open(pure_asdf) as af:
        assert not isinstance(af, AsdfInFits)
        assert_tree_match(tree, af.tree)
示例#2
0
    def createFromScratch(self, phu, extensions=None):
        """
        Creates an AstroData object from a collection of objects.
        """

        lst = HDUList()
        if phu is not None:
            if isinstance(phu, PrimaryHDU):
                lst.append(phu)
            elif isinstance(phu, Header):
                lst.append(PrimaryHDU(header=deepcopy(phu), data=DELAYED))
            elif isinstance(phu, (dict, list, tuple)):
                p = PrimaryHDU()
                p.header.update(phu)
                lst.append(p)
            else:
                raise ValueError(
                    "phu must be a PrimaryHDU or a valid header object")

        # TODO: Verify the contents of extensions...
        if extensions is not None:
            for ext in extensions:
                lst.append(ext)

        return self.getAstroData(lst)
示例#3
0
def tofits(filename, data, hdr=None, clobber=False):
    """simple pyfits wrapper to make saving fits files easier."""
    hdu = PrimaryHDU(data)
    if not (hdr is None):
        hdu.header += hdr
    hdulist = HDUList([hdu])
    hdulist.writeto(filename, overwrite=clobber, output_verify='ignore')
示例#4
0
 def to_hdu_list(self):
     """Convert to `~astropy.io.fits.HDUList`.
     """
     hdu_list = HDUList()
     for image in self:
         hdu = image.to_image_hdu()
         hdu_list.append(hdu)
     return hdu_list
示例#5
0
    def test_datasets(self):
        records = DALResults.from_result_url(
            'http://example.com/query/dataset')

        record = records[0]
        assert record.getdataurl() == 'http://example.com/querydata/image.fits'
        dataset = record.getdataset()
        HDUList.fromstring(dataset.read())
示例#6
0
    def test_datasets(self):
        records = DALResults.from_result_url(
            'http://example.com/query/dataset')

        record = records[0]
        assert record.getdataurl() == 'http://example.com/querydata/image.fits'
        dataset = record.getdataset()
        HDUList.fromstring(dataset.read())
示例#7
0
文件: lists.py 项目: dlennarz/gammapy
 def to_hdu_list(self):
     """Convert to `~astropy.io.fits.HDUList`.
     """
     hdu_list = HDUList()
     for image in self:
         hdu = image.to_image_hdu()
         hdu_list.append(hdu)
     return hdu_list
示例#8
0
def export_visibility_to_fits(vis: Visibility, fits_file: str):

    hdu = HDUList([
        PrimaryHDU(),
        configuration_to_hdu(vis.configuration),
        visibility_to_hdu(vis)
    ])
    with open(fits_file, "w") as f:
        hdu.writeto(f, checksum=True)
示例#9
0
    def setup_class(self):
        self.data1 = np.array(list(
            zip([1, 2, 3, 4], ['a', 'b', 'c', 'd'], [2.3, 4.5, 6.7, 8.9])),
                              dtype=[('a', int), ('b', 'U1'), ('c', float)])
        self.data2 = np.array(list(
            zip([1.4, 2.3, 3.2, 4.7], [2.3, 4.5, 6.7, 8.9])),
                              dtype=[('p', float), ('q', float)])
        hdu1 = PrimaryHDU()
        hdu2 = BinTableHDU(self.data1, name='first')
        hdu3 = BinTableHDU(self.data2, name='second')

        self.hdus = HDUList([hdu1, hdu2, hdu3])
示例#10
0
    def save_fits(self, folder: str) -> str:
        data = self.data.copy()

        assert data.dtype == np.float32 and data.max() <= 1.0 and data.min() >= 0.0, f"{data.dtype} {data.max()} {data.min()}"

        hdu = PrimaryHDU(
            data=self.data,
            header=self.fits_header,
        )
        l = HDUList([hdu])
        path = join(folder, f"{self.key}.fits")
        l.writeto(path, overwrite=True)
        return path
示例#11
0
def trim_throughput(indir, outdir):
    '''downsample throughput files'''
    assert os.path.basename(indir) == 'throughput'
    if not os.path.exists(outdir):
        os.makedirs(outdir)

    for targettype in ('elg', 'lrg', 'perfect', 'qso', 'sky', 'star'):
        filename = 'fiberloss-{}.dat'.format(targettype)
        shutil.copy(os.path.join(indir, filename),
                    os.path.join(outdir, filename))

    for filename in ['thru-b.fits', 'thru-r.fits', 'thru-z.fits']:
        fx = fits.open(indir + '/' + filename)
        hdus = HDUList()
        hdus.append(fx[0])
        hdus.append(BinTableHDU(fx[1].data[::20], header=fx[1].header))
        hdus.append(BinTableHDU(fx[2].data[::20], header=fx[2].header))
        hdus.writeto(outdir + '/' + filename)
        fx.close()

    for filename in [
            'DESI-0347_blur.ecsv', 'DESI-0347_offset.ecsv',
            'DESI-0347_random_offset_1.fits'
    ]:
        shutil.copy(os.path.join(indir, filename),
                    os.path.join(outdir, filename))
示例#12
0
    async def write_fits(self, filename: str, hdulist: fits.HDUList,
                         *args: Any, **kwargs: Any) -> None:
        """Convenience function for writing an Image to a FITS file.

        Args:
            filename: Name of file to write.
            hdulist: hdu list to write.
        """

        # open file
        async with self.open_file(filename, "wb") as f:
            with io.BytesIO() as bio:
                hdulist.writeto(bio, *args, **kwargs)
                await f.write(bio.getvalue())
示例#13
0
    def from_hdu(hdu):
        '''
        Return a OneDSpectrum from a FITS HDU or HDU list.
        '''

        if isinstance(hdu, HDUList):
            hdul = hdu
            hdu = hdul[0]
        else:
            hdul = HDUList([hdu])

        if not len(hdu.data.shape) == 1:
            raise ValueError("HDU must contain one-dimensional data.")

        meta = {}

        mywcs = wcs.WCS(hdu.header)

        if "BUNIT" in hdu.header:
            unit = convert_bunit(hdu.header["BUNIT"])
            meta["BUNIT"] = hdu.header["BUNIT"]
        else:
            unit = None

        beams = cube_utils.try_load_beams(hdul)

        self = OneDSpectrum(hdu.data,
                            unit=unit,
                            wcs=mywcs,
                            meta=meta,
                            header=hdu.header,
                            beams=beams)

        return self
示例#14
0
    def setup_method(self, method):

        from astropy.table import Table
        from astropy.io.fits import HDUList, ImageHDU

        Registry().clear()

        x = [1, 2, 3]
        y = [2, 3, 4]

        u = [10, 20, 30, 40]
        v = [20, 40, 60, 80]

        self.xy = {'x': x, 'y': y}
        self.dict_data = {'u': u, 'v': v}
        self.recarray_data = np.rec.array([(0, 1), (2, 3)],
                                          dtype=[(str('a'), int),
                                                 (str('b'), int)])
        self.astropy_table = Table({'x': x, 'y': y})
        self.bad_data = {'x': x, 'u': u}
        self.hdulist = HDUList([ImageHDU(x, name='PRIMARY')])

        self.x = np.array(x)
        self.y = np.array(y)
        self.u = np.array(u)
        self.v = np.array(v)
示例#15
0
 def testFits(self):
     """Test I/O with FITS"""
     from astropy.io.fits import HDUList
     fits = HDUList()
     self.fluxTable.toFits(fits)
     ft = FluxTable.fromFits(fits)
     self.assertFluxTable(ft)
示例#16
0
def align(hduls, name="SCI", reference=None):
    """
    Aligns the source astronomical image(s) to the reference astronomical image
    \b
    :param hduls: list of fitsfiles
    :return: list of fistfiles with <name> HDU aligned
    """

    hduls_list = [hdul for hdul in hduls]
    sources = [hdul[name] for hdul in hduls_list]
    outputs = []

    if reference is None:
        reference = snr.snr(hduls_list, name)[name]
    # click.echo(reference.header["ORIGNAME"])
    # FIXME log ref name
    np_ref = to_np(
        reference,
        "Cannot align to unexpected type {}; expected numpy array or FITS HDU")

    for source in sources:
        np_src = to_np(
            source,
            "Cannot align unexpected type {}; expected numpy array or FITS HDU"
        )
        # possibly unneccessary but unsure about scoping
        output = np.array([])

        output = astroalign.register(np_src, np_ref)[0]
        if isinstance(source, HDU_TYPES):
            output = PrimaryHDU(output, source.header)
        outputs.append(HDUList([output]))

    return (hdul for hdul in outputs)
    def hdulist(self):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            hdu = self.hdu

        beamhdu = beams_to_bintable(self.beams)

        return HDUList([hdu, beamhdu])
示例#18
0
def fake_hdulist(extver=1, version=2, timesys="TDB", telescop="KEPLER"):
    new_header = fake_header(extver, version, timesys, telescop)
    return [
        HDUList(hdus=[
            PrimaryHDU(header=new_header),
            BinTableHDU(header=new_header, name="LIGHTCURVE")
        ])
    ]
示例#19
0
def random_position(image: fits.HDUList,
                    hg_ra: float,
                    hg_dec: float,
                    limit: int = 10,
                    show: bool = False):
    image, path = ff.path_or_hdu(image)

    header = image[0].header
    data = image[0].data
    # Find host galaxy pixel
    wcs_info = wcs.WCS(header)
    hg_x, hg_y = wcs_info.all_world2pix(hg_ra, hg_dec, 0)
    hg_x = int(np.round(hg_x))
    hg_y = int(np.round(hg_y))

    image_copy = data.copy()[hg_y - limit:hg_y + limit,
                             hg_x - limit:hg_x + limit]

    noise = np.median(image_copy)
    image_copy = image_copy - noise

    image_flatten = image_copy.flatten(1)

    i = st.value_from_pdf(np.arange(image_flatten.shape[0]),
                          image_flatten / max(image_flatten))
    i = int(i)
    x, y = np.unravel_index(i, image_copy.shape)

    if show:
        plt.imshow(image_copy)
        plt.scatter(x, y)
        plt.show()
        plt.close()
        plt.plot(image_flatten / max(image_flatten))
        plt.show()

    x += hg_x - limit + np.random.uniform(-0.5, 0.5)
    y += hg_y - limit + np.random.uniform(-0.5, 0.5)

    ra, dec = wcs_info.all_pix2world(x, y, 0)

    if path:
        image.close()

    return x, y, ra, dec
示例#20
0
文件: trim.py 项目: rpanman/desimodel
def trim_quickpsf(indir, outdir, filename):
    assert os.path.abspath(indir) != os.path.abspath(outdir)
    infile = os.path.join(indir, filename)
    outfile = os.path.join(outdir, filename)
    fx = fits.open(infile)
    hdus = HDUList()
    hdus.append(fx[0])
    for i in [1,2,3]:
        d = fx[i].data
        hdus.append(BinTableHDU(d[::10], header=fx[i].header))
    hdus.writeto(outfile, clobber=True)
    fx.close()
    def from_hdu(hdu):
        '''
        Return a OneDSpectrum from a FITS HDU or HDU list.
        '''

        if isinstance(hdu, HDUList):
            hdul = hdu
            hdu = hdul[0]
        else:
            hdul = HDUList([hdu])

        if not len(hdu.data.shape) == 1:
            raise ValueError("HDU must contain one-dimensional data.")

        meta = {}

        mywcs = wcs.WCS(hdu.header)

        if "BUNIT" in hdu.header:
            unit = convert_bunit(hdu.header["BUNIT"])
            meta["BUNIT"] = hdu.header["BUNIT"]
        else:
            unit = None

        beams_table = cube_utils.try_load_beams(hdul)

        if beams_table is not None:
            # Convert to a beams object from the table
            beams = Beams(
                major=u.Quantity(beams_table['BMAJ'], u.arcsec),
                minor=u.Quantity(beams_table['BMIN'], u.arcsec),
                pa=u.Quantity(beams_table['BPA'], u.deg),
                meta=[{
                    key: row[key]
                    for key in beams_table.names
                    if key not in ('BMAJ', 'BPA', 'BMIN')
                } for row in beams_table],
            )
            self = VaryingResolutionOneDSpectrum(hdu.data,
                                                 unit=unit,
                                                 wcs=mywcs,
                                                 meta=meta,
                                                 header=hdu.header,
                                                 beams=beams)
        else:
            beam = cube_utils.try_load_beam(hdu.header)
            self = OneDSpectrum(hdu.data,
                                unit=unit,
                                wcs=mywcs,
                                meta=meta,
                                header=hdu.header,
                                beam=beam)

        return self
示例#22
0
    def setup_class(self):
        self.data1 = np.array(list(
            zip([1, 2, 3, 4], ['a', 'b', 'c', 'd'], [2.3, 4.5, 6.7, 8.9])),
                              dtype=[('a', int), ('b', 'U1'), ('c', float)])
        self.data2 = np.array(list(
            zip([1.4, 2.3, 3.2, 4.7], [2.3, 4.5, 6.7, 8.9])),
                              dtype=[('p', float), ('q', float)])
        self.data3 = np.array(list(zip([1, 2, 3, 4], [2.3, 4.5, 6.7, 8.9])),
                              dtype=[('A', int), ('B', float)])
        hdu0 = PrimaryHDU()
        hdu1 = BinTableHDU(self.data1, name='first')
        hdu2 = BinTableHDU(self.data2, name='second')
        hdu3 = ImageHDU(np.ones((3, 3)), name='third')
        hdu4 = BinTableHDU(self.data3)

        self.hdus = HDUList([hdu0, hdu1, hdu2, hdu3, hdu4])
        self.hdusb = HDUList([hdu0, hdu3, hdu2, hdu1])
        self.hdus3 = HDUList([hdu0, hdu3, hdu2])
        self.hdus2 = HDUList([hdu0, hdu1, hdu3])
        self.hdus1 = HDUList([hdu0, hdu1])
示例#23
0
 def _create_fits(self):
     hdul = HDUList(PrimaryHDU())
     h = hdul[0].header
     h.append(Card('name', self.name))
     self._cf_pre_hook(hdul)
     self._cf_add_setup_info(hdul)
     self._cf_post_setup_hook(hdul)
     self._cf_add_summary_statistics(hdul)
     self._cf_add_pipeline_steps(hdul)
     self._cf_post_hook(hdul)
     return hdul
示例#24
0
def test_fitsdiff_openfile(tmpdir):
    """Make sure that failing FITSDiff doesn't leave open files."""
    path1 = str(tmpdir.join("file1.fits"))
    path2 = str(tmpdir.join("file2.fits"))

    hdulist = HDUList([PrimaryHDU(), ImageHDU(data=np.zeros(5))])
    hdulist.writeto(path1)
    hdulist[1].data[0] = 1
    hdulist.writeto(path2)

    diff = FITSDiff(path1, path2)
    assert diff.identical, diff.report()
示例#25
0
def get_primary_extension(hdu: fits.HDUList):
    """
    Figure out which is the primary extension (1 if fpacked, 0 otherwise)
    :param hdu: astropy.io.fits.HDUList
    :return: int
    """
    _, file_extension = os.path.splitext(hdu.filename())
    if file_extension == '.fz':
        primary_extension = 1
    else:
        primary_extension = 0

    return primary_extension
示例#26
0
    def setup_class(self):
        self.data1 = np.array(list(zip([1, 2, 3, 4],
                                       ['a', 'b', 'c', 'd'],
                                       [2.3, 4.5, 6.7, 8.9])),
                              dtype=[(str('a'), int), (str('b'), str('U1')), (str('c'), float)])
        self.data2 = np.array(list(zip([1.4, 2.3, 3.2, 4.7],
                                       [2.3, 4.5, 6.7, 8.9])),
                              dtype=[(str('p'), float), (str('q'), float)])
        hdu1 = PrimaryHDU()
        hdu2 = BinTableHDU(self.data1, name='first')
        hdu3 = BinTableHDU(self.data2, name='second')

        self.hdus = HDUList([hdu1, hdu2, hdu3])
示例#27
0
def _prepare_hdulist(hdulist, default_extension='SCI', extname_parser=None):
    new_list = []
    highest_ver = 0
    recognized = set()

    if len(hdulist) > 1 or (len(hdulist) == 1 and hdulist[0].data is None):
        # MEF file
        # First get HDUs for which EXTVER is defined
        for n, hdu in enumerate(hdulist):
            if extname_parser:
                extname_parser(hdu)
            ver = hdu.header.get('EXTVER')
            if ver not in (-1, None) and hdu.name:
                highest_ver = max(highest_ver, ver)
            elif not isinstance(hdu, PrimaryHDU):
                continue

            new_list.append(hdu)
            recognized.add(hdu)

        # Then HDUs that miss EXTVER
        for hdu in hdulist:
            if hdu in recognized:
                continue
            elif isinstance(hdu, ImageHDU):
                highest_ver += 1
                if 'EXTNAME' not in hdu.header:
                    hdu.header['EXTNAME'] = (default_extension,
                                             'Added by AstroData')
                if hdu.header.get('EXTVER') in (-1, None):
                    hdu.header['EXTVER'] = (highest_ver, 'Added by AstroData')

            new_list.append(hdu)
            recognized.add(hdu)
    else:
        # Uh-oh, a single image FITS file
        new_list.append(PrimaryHDU(header=hdulist[0].header))
        image = ImageHDU(header=hdulist[0].header, data=hdulist[0].data)
        # Fudge due to apparent issues with assigning ImageHDU from data
        image._orig_bscale = hdulist[0]._orig_bscale
        image._orig_bzero = hdulist[0]._orig_bzero

        for keyw in ('SIMPLE', 'EXTEND'):
            if keyw in image.header:
                del image.header[keyw]
        image.header['EXTNAME'] = (default_extension, 'Added by AstroData')
        image.header['EXTVER'] = (1, 'Added by AstroData')
        new_list.append(image)

    return HDUList(sorted(new_list, key=fits_ext_comp_key))
示例#28
0
    def get_stamps(self, oid, candid=None):
        """Download Stamps for an specific alert.

        Parameters
        ----------
        oid : :py:class:`str`
            object ID in ALeRCE DBs.
        candid : :py:class:`int`
            Candid of the stamp to be displayed.

        Returns
        -------
        :class:`astropy.io.fits.HDUList`
            Science, Template and Difference stamps for an specific alert.
        """
        if candid is None:
            candid = self._get_first_detection(oid)
        try:
            hdulist = HDUList()
            for stamp_type in ["science", "template", "difference"]:
                tmp_hdulist = fits_open(
                    "%s?oid=%s&candid=%s&type=%s&format=fits"
                    % (
                        self.config["AVRO_URL"]
                        + self.config["AVRO_ROUTES"]["get_stamp"],
                        oid,
                        candid,
                        stamp_type,
                    )
                )
                hdu = tmp_hdulist[0]
                hdu.header["STAMP_TYPE"] = stamp_type
                hdulist.append(hdu)
            return hdulist
        except HTTPError:
            warnings.warn("AVRO File not found.", RuntimeWarning)
            return None
    def from_hdu(hdu):
        '''
        Return a OneDSpectrum from a FITS HDU or HDU list.
        '''

        if isinstance(hdu, HDUList):
            hdul = hdu
            hdu = hdul[0]
        else:
            hdul = HDUList([hdu])

        if not len(hdu.data.shape) == 1:
            raise ValueError("HDU must contain one-dimensional data.")

        meta = {}

        mywcs = wcs.WCS(hdu.header)

        if "BUNIT" in hdu.header:
            unit = convert_bunit(hdu.header["BUNIT"])
            meta["BUNIT"] = hdu.header["BUNIT"]
        else:
            unit = None

        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', category=FITSWarning)
            beam = cube_utils.try_load_beams(hdul)
            if hasattr(beam, '__len__'):
                beams = beam
            else:
                beams = None

        if beams is not None:
            self = VaryingResolutionOneDSpectrum(hdu.data,
                                                 unit=unit,
                                                 wcs=mywcs,
                                                 meta=meta,
                                                 header=hdu.header,
                                                 beams=beams)
        else:
            beam = cube_utils.try_load_beam(hdu.header)
            self = OneDSpectrum(hdu.data,
                                unit=unit,
                                wcs=mywcs,
                                meta=meta,
                                header=hdu.header,
                                beam=beam)

        return self
示例#30
0
    def writeFits(self, filename):
        """Write to FITS file

        This API is intended for use by the LSST data butler, which handles
        translating the desired identity into a filename.

        Parameters
        ----------
        filename : `str`
            Filename of FITS file.
        """
        from astropy.io.fits import HDUList, PrimaryHDU
        fits = HDUList()
        fits.append(PrimaryHDU())
        self._writeImpl(fits)
        with open(filename, "wb") as fd:
            fits.writeto(fd)
示例#31
0
def raw_converter_to_calibrated_hdulist(converter):
    # type: (SingleCCDRawConverter) -> HDUList
    """
    TODO: Document me

    :param converter:
    """
    early_dark_pixel_columns = converter.parameters.early_dark_pixel_columns  # type: int
    late_dark_pixel_columns = converter.parameters.late_dark_pixel_columns  # type: int
    # noinspection PyUnresolvedReferences
    left_dark_parts = [
        raw_slice.pixels[:, :early_dark_pixel_columns]
        for raw_slice in converter.slices
    ]  # type: list
    # noinspection PyUnresolvedReferences
    right_dark_parts = [
        raw_slice.pixels[:, -late_dark_pixel_columns:]
        for raw_slice in converter.slices
    ]  # type: list
    # noinspection PyUnresolvedReferences
    image_parts = [
        raw_slice.pixels[:, early_dark_pixel_columns:-late_dark_pixel_columns]
        for raw_slice in converter.slices
    ]  # type: list

    for i in range(1, len(converter.slices), 2):
        left_dark_parts[i] = numpy.fliplr(left_dark_parts[i])
        right_dark_parts[i] = numpy.fliplr(right_dark_parts[i])
        image_parts[i] = numpy.fliplr(image_parts[i])

    header_with_parameters = set_header_settings(
        converter.parameters, raw_converter_parameters,
        converter.conversion_metadata.header)
    header_with_transformation_flags = set_header_settings(
        converter.flags, raw_transformation_flags, header_with_parameters)
    if converter.conversion_metadata.command is not None:
        header_with_transformation_flags.add_history(
            converter.conversion_metadata.command)

    return HDUList(
        PrimaryHDU(
            header=header_with_transformation_flags,
            # `+` concatenates python lists
            data=numpy.hstack(left_dark_parts + image_parts +
                              right_dark_parts)))
示例#32
0
def hdu_to_imagemodel(in_hdu):
    """
    Workaround for initializing a `jwst.datamodels.ImageModel` from a 
    normal FITS ImageHDU that could contain HST header keywords and 
    unexpected WCS definition.
    
    TBD
    
    Parameters
    ----------
    in_hdu : `astropy.io.fits.ImageHDU`
    
    
    Returns
    -------
    img : `jwst.datamodels.ImageModel`
    
    
    """
    from astropy.io.fits import ImageHDU, HDUList
    from astropy.coordinates import ICRS

    from jwst.datamodels import util
    import gwcs

    hdu = ImageHDU(data=in_hdu.data, header=in_hdu.header)

    new_header = strip_telescope_header(hdu.header)

    hdu.header = new_header

    # Initialize data model
    img = util.open(HDUList([hdu]))

    # Initialize GWCS
    tform = gwcs.wcs.utils.make_fitswcs_transform(new_header)
    hwcs = gwcs.WCS(forward_transform=tform,
                    output_frame=ICRS())  #gwcs.CelestialFrame())
    sh = hdu.data.shape
    hwcs.bounding_box = ((-0.5, sh[0] - 0.5), (-0.5, sh[1] - 0.5))

    # Put gWCS in meta, where blot/drizzle expect to find it
    img.meta.wcs = hwcs

    return img
示例#33
0
    def write_fits(self, filename, overwrite=False):
        r'''Write pipeline results to a FITS file.

        Parameters
        ----------
        filename : str
            Name of output file to be written.
        overwrite : bool
            If filename already exists, this flag indicates whether or not to
            overwrite it (without warning).
        '''
        from astropy.io.fits import HDUList, PrimaryHDU, table_to_hdu
        hdul = [PrimaryHDU()]
        for t in self.table_config:
            hdu = table_to_hdu(self[t])
            hdu.header['EXTNAME'] = t
            hdul.append(hdu)
        HDUList(hdul).writeto(filename, overwrite=overwrite)
示例#34
0
    def createFromScratch(self, phu, extensions=None):
        """
        Creates an AstroData object from a collection of objects.
        """

        lst = HDUList()
        if phu is not None:
            if isinstance(phu, PrimaryHDU):
                lst.append(phu)
            elif isinstance(phu, Header):
                lst.append(PrimaryHDU(header=deepcopy(phu), data=DELAYED))
            elif isinstance(phu, (dict, list, tuple)):
                p = PrimaryHDU()
                p.header.update(phu)
                lst.append(p)
            else:
                raise ValueError("phu must be a PrimaryHDU or a valid header object")

        # TODO: Verify the contents of extensions...
        if extensions is not None:
            for ext in extensions:
                lst.append(ext)

        return self.getAstroData(lst)
示例#35
0
def mime_object_maker(url, mimetype):
    """
    return a data object suitable for the mimetype given.
    this will either return a astropy fits object or a pyvo DALResults object,
    a PIL object for conventional images or string for text content.

    Parameters
    ----------
    url : str
        the object download url
    mimetype : str
        the content mimetype
    """
    mimetype = mimeparse.parse_mime_type(mimetype)

    if mimetype[0] == 'text':
        return s.get(url).text

    if mimetype[1] == 'fits' or mimetype[1] == 'x-fits':
        r = s.get(url)
        return HDUList.fromstring(r.content)

    if mimetype[0] == 'image':
        from PIL import Image
        from io import BytesIO
        r = s.get(url)
        b = BytesIO(r.content)
        return Image.open(b)

    if mimetype[1] == 'x-votable' or mimetype[1] == 'x-votable+xml':
        # As soon as there are some kind of recursive data structures,
        # things start to get really f*cked up
        if mimetype[2].get('content', None) == 'datalink':
            from .adhoc import DatalinkResults
            return DatalinkResults.from_result_url(url)
        else:
            from .query import DALResults
            return DALResults.from_result_url(url)
示例#36
0
    def test_ignore_hdus_report(self, capsys):
        a = np.arange(100).reshape(10, 10)
        b = a.copy() + 1
        ha = Header([('A', 1), ('B', 2), ('C', 3)])
        phdu_a = PrimaryHDU(header=ha)
        phdu_b = PrimaryHDU(header=ha)
        ihdu_a = ImageHDU(data=a, name='SCI')
        ihdu_b = ImageHDU(data=b, name='SCI')
        hdulist_a = HDUList([phdu_a, ihdu_a])
        hdulist_b = HDUList([phdu_b, ihdu_b])
        tmp_a = self.temp('testa.fits')
        tmp_b = self.temp('testb.fits')
        hdulist_a.writeto(tmp_a)
        hdulist_b.writeto(tmp_b)

        numdiff = fitsdiff.main([tmp_a, tmp_b, "-u", "SCI"])
        assert numdiff == 0
        out, err = capsys.readouterr()
        assert "testa.fits" in out
        assert "testb.fits" in out
示例#37
0
class TestMultipleHDU:

    def setup_class(self):
        self.data1 = np.array(list(zip([1, 2, 3, 4],
                                       ['a', 'b', 'c', 'd'],
                                       [2.3, 4.5, 6.7, 8.9])),
                              dtype=[(str('a'), int), (str('b'), str('U1')), (str('c'), float)])
        self.data2 = np.array(list(zip([1.4, 2.3, 3.2, 4.7],
                                       [2.3, 4.5, 6.7, 8.9])),
                              dtype=[(str('p'), float), (str('q'), float)])
        hdu1 = PrimaryHDU()
        hdu2 = BinTableHDU(self.data1, name='first')
        hdu3 = BinTableHDU(self.data2, name='second')

        self.hdus = HDUList([hdu1, hdu2, hdu3])

    def teardown_class(self):
        del self.hdus

    def setup_method(self, method):
        warnings.filterwarnings('always')

    def test_read(self, tmpdir):
        filename = str(tmpdir.join('test_read.fits'))
        self.hdus.writeto(filename)
        with catch_warnings() as l:
            t = Table.read(filename)
        assert len(l) == 1
        assert str(l[0].message).startswith(
            'hdu= was not specified but multiple tables are present, reading in first available table (hdu=1)')
        assert equal_data(t, self.data1)

    def test_read_with_hdu_0(self, tmpdir):
        filename = str(tmpdir.join('test_read_with_hdu_0.fits'))
        self.hdus.writeto(filename)
        with pytest.raises(ValueError) as exc:
            Table.read(filename, hdu=0)
        assert exc.value.args[0] == 'No table found in hdu=0'

    @pytest.mark.parametrize('hdu', [1, 'first'])
    def test_read_with_hdu_1(self, tmpdir, hdu):
        filename = str(tmpdir.join('test_read_with_hdu_1.fits'))
        self.hdus.writeto(filename)
        with catch_warnings() as l:
            t = Table.read(filename, hdu=hdu)
        assert len(l) == 0
        assert equal_data(t, self.data1)

    @pytest.mark.parametrize('hdu', [2, 'second'])
    def test_read_with_hdu_2(self, tmpdir, hdu):
        filename = str(tmpdir.join('test_read_with_hdu_2.fits'))
        self.hdus.writeto(filename)
        with catch_warnings() as l:
            t = Table.read(filename, hdu=hdu)
        assert len(l) == 0
        assert equal_data(t, self.data2)

    def test_read_from_hdulist(self):
        with catch_warnings() as l:
            t = Table.read(self.hdus)
        assert len(l) == 1
        assert str(l[0].message).startswith(
            'hdu= was not specified but multiple tables are present, reading in first available table (hdu=1)')
        assert equal_data(t, self.data1)

    def test_read_from_hdulist_with_hdu_0(self, tmpdir):
        with pytest.raises(ValueError) as exc:
            Table.read(self.hdus, hdu=0)
        assert exc.value.args[0] == 'No table found in hdu=0'

    @pytest.mark.parametrize('hdu', [1, 'first'])
    def test_read_from_hdulist_with_hdu_1(self, tmpdir, hdu):
        with catch_warnings() as l:
            t = Table.read(self.hdus, hdu=hdu)
        assert len(l) == 0
        assert equal_data(t, self.data1)

    @pytest.mark.parametrize('hdu', [2, 'second'])
    def test_read_from_hdulist_with_hdu_2(self, tmpdir, hdu):
        with catch_warnings() as l:
            t = Table.read(self.hdus, hdu=hdu)
        assert len(l) == 0
        assert equal_data(t, self.data2)

    def test_read_from_single_hdu(self):
        with catch_warnings() as l:
            t = Table.read(self.hdus[1])
        assert len(l) == 0
        assert equal_data(t, self.data1)