def baseline_predict(instances): predictions = [] with open(Config.raw_test_set(), "w") as fp: for instance in instances: fp.write("%s\n" % json.dumps(instance)) pipeline.main() with open(Config.submission_file(), "r") as fp: for line in fp: predictions.append(json.loads(line.strip())) return predictions
def main(mode, config, estimator=None): LogHelper.setup() logger = LogHelper.get_logger(os.path.splitext(os.path.basename(__file__))[0] + "_" + mode) logger.info("model: " + mode + ", config: " + str(config)) logger.info("scorer type: " + Config.estimator_name) logger.info("random seed: " + str(Config.seed)) logger.info("ESIM arguments: " + str(Config.esim_hyper_param)) # loading FastText takes a long time, so better pickle the loaded FastText model if os.path.splitext(Config.fasttext_path)[1] == '.p': with open(Config.fasttext_path, "rb") as ft_file: fasttext_model = pickle.load(ft_file) else: fasttext_model = Config.fasttext_path if mode == 'train': # # training mode training_set, fasttext_model, vocab, embeddings, _, _ = embed_data_set_with_glove_and_fasttext( Config.training_set_file, Config.db_path(), fasttext_model, glove_path=Config.glove_path, threshold_b_sent_num=Config.max_sentences, threshold_b_sent_size=Config.max_sentence_size, threshold_h_sent_size=Config.max_claim_size) h_sent_sizes = training_set['data']['h_sent_sizes'] h_sizes = np.ones(len(h_sent_sizes), np.int32) training_set['data']['h_sent_sizes'] = np.expand_dims(h_sent_sizes, 1) training_set['data']['h_sizes'] = h_sizes training_set['data']['h_np'] = np.expand_dims(training_set['data']['h_np'], 1) training_set['data']['h_ft_np'] = np.expand_dims(training_set['data']['h_ft_np'], 1) valid_set, _, _, _, _, _ = embed_data_set_with_glove_and_fasttext(Config.dev_set_file, Config.db_path(), fasttext_model, vocab_dict=vocab, glove_embeddings=embeddings, threshold_b_sent_num=Config.max_sentences, threshold_b_sent_size=Config.max_sentence_size, threshold_h_sent_size=Config.max_claim_size) del fasttext_model h_sent_sizes = valid_set['data']['h_sent_sizes'] h_sizes = np.ones(len(h_sent_sizes), np.int32) valid_set['data']['h_sent_sizes'] = np.expand_dims(h_sent_sizes, 1) valid_set['data']['h_sizes'] = h_sizes valid_set['data']['h_np'] = np.expand_dims(valid_set['data']['h_np'], 1) valid_set['data']['h_ft_np'] = np.expand_dims(valid_set['data']['h_ft_np'], 1) X_dict = { 'X_train': training_set['data'], 'X_valid': valid_set['data'], 'y_valid': valid_set['label'], 'embedding': embeddings } if estimator is None: estimator = get_estimator(Config.estimator_name, Config.ckpt_folder) estimator.fit(X_dict, training_set['label']) save_model(estimator, Config.model_folder, Config.pickle_name, logger) elif mode == 'test': # testing mode restore_param_required = estimator is None if estimator is None: estimator = load_model(Config.model_folder, Config.pickle_name) if estimator is None: estimator = get_estimator(Config.estimator_name, Config.ckpt_folder) vocab, embeddings = load_whole_glove(Config.glove_path) vocab = vocab_map(vocab) test_set, _, _, _, _, _ = embed_data_set_with_glove_and_fasttext(Config.test_set_file, Config.db_path(), fasttext_model, vocab_dict=vocab, glove_embeddings=embeddings, threshold_b_sent_num=Config.max_sentences, threshold_b_sent_size=Config.max_sentence_size, threshold_h_sent_size=Config.max_claim_size) del fasttext_model h_sent_sizes = test_set['data']['h_sent_sizes'] h_sizes = np.ones(len(h_sent_sizes), np.int32) test_set['data']['h_sent_sizes'] = np.expand_dims(h_sent_sizes, 1) test_set['data']['h_sizes'] = h_sizes test_set['data']['h_np'] = np.expand_dims(test_set['data']['h_np'], 1) test_set['data']['h_ft_np'] = np.expand_dims(test_set['data']['h_ft_np'], 1) x_dict = { 'X_test': test_set['data'], 'embedding': embeddings } predictions = estimator.predict(x_dict, restore_param_required) generate_submission(predictions, test_set['id'], Config.test_set_file, Config.submission_file()) if 'label' in test_set: print_metrics(test_set['label'], predictions, logger) else: logger.error("Invalid argument --mode: " + mode + " Argument --mode should be either 'train’ or ’test’")
def main(mode, config, estimator=None): LogHelper.setup() logger = LogHelper.get_logger( os.path.splitext(os.path.basename(__file__))[0] + "_" + mode) logger.info("model: " + mode + ", config: " + str(config)) if hasattr(Config, 'use_inter_evidence_comparison'): use_inter_evidence_comparison = Config.use_inter_evidence_comparison else: use_inter_evidence_comparison = False if hasattr(Config, 'use_claim_evidences_comparison'): use_claim_evidences_comparison = Config.use_claim_evidences_comparison else: use_claim_evidences_comparison = False if hasattr(Config, 'use_extra_features'): use_extra_features = Config.use_extra_features else: use_extra_features = False if hasattr(Config, 'use_numeric_feature'): use_numeric_feature = Config.use_numeric_feature else: use_numeric_feature = False logger.info("scorer type: " + Config.estimator_name) logger.info("random seed: " + str(Config.seed)) logger.info("ESIM arguments: " + str(Config.esim_end_2_end_hyper_param)) logger.info("use_inter_sentence_comparison: " + str(use_inter_evidence_comparison)) logger.info("use_extra_features: " + str(use_extra_features)) logger.info("use_numeric_feature: " + str(use_numeric_feature)) logger.info("use_claim_evidences_comparison: " + str(use_claim_evidences_comparison)) if mode == 'train': # # training mode if hasattr(Config, 'training_dump') and os.path.exists( Config.training_dump): with open(Config.training_dump, 'rb') as f: (X_dict, y_train) = pickle.load(f) else: training_set, vocab, embeddings, _, _ = embed_data_set_with_glove_2( Config.training_set_file, Config.db_path(), glove_path=Config.glove_path, threshold_b_sent_num=Config.max_sentences, threshold_b_sent_size=Config.max_sentence_size, threshold_h_sent_size=Config.max_claim_size) h_sent_sizes = training_set['data']['h_sent_sizes'] h_sizes = np.ones(len(h_sent_sizes), np.int32) training_set['data']['h_sent_sizes'] = np.expand_dims( h_sent_sizes, 1) training_set['data']['h_sizes'] = h_sizes training_set['data']['h_np'] = np.expand_dims( training_set['data']['h_np'], 1) valid_set, _, _, _, _ = embed_data_set_with_glove_2( Config.dev_set_file, Config.db_path(), vocab_dict=vocab, glove_embeddings=embeddings, threshold_b_sent_num=Config.max_sentences, threshold_b_sent_size=Config.max_sentence_size, threshold_h_sent_size=Config.max_claim_size) h_sent_sizes = valid_set['data']['h_sent_sizes'] h_sizes = np.ones(len(h_sent_sizes), np.int32) valid_set['data']['h_sent_sizes'] = np.expand_dims(h_sent_sizes, 1) valid_set['data']['h_sizes'] = h_sizes valid_set['data']['h_np'] = np.expand_dims( valid_set['data']['h_np'], 1) if use_extra_features: assert hasattr( Config, 'feature_path' ), "Config should has feature_path if Config.use_feature is True" training_claim_features, training_evidence_features = load_feature_by_data_set( Config.training_set_file, Config.feature_path, Config.max_sentences) valid_claim_features, valid_evidence_features = load_feature_by_data_set( Config.dev_set_file, Config.feature_path, Config.max_sentences) training_set['data']['h_feats'] = training_claim_features training_set['data']['b_feats'] = training_evidence_features valid_set['data']['h_feats'] = valid_claim_features valid_set['data']['b_feats'] = valid_evidence_features if use_numeric_feature: training_num_feat = number_feature(Config.training_set_file, Config.db_path(), Config.max_sentences) valid_num_feat = number_feature(Config.dev_set_file, Config.db_path(), Config.max_sentences) training_set['data']['num_feat'] = training_num_feat valid_set['data']['num_feat'] = valid_num_feat if use_inter_evidence_comparison: training_concat_sent_indices, training_concat_sent_sizes = generate_concat_indices_for_inter_evidence( training_set['data']['b_np'], training_set['data']['b_sent_sizes'], Config.max_sentence_size, Config.max_sentences) training_set['data'][ 'b_concat_indices'] = training_concat_sent_indices training_set['data'][ 'b_concat_sizes'] = training_concat_sent_sizes valid_concat_sent_indices, valid_concat_sent_sizes = generate_concat_indices_for_inter_evidence( valid_set['data']['b_np'], valid_set['data']['b_sent_sizes'], Config.max_sentence_size, Config.max_sentences) valid_set['data'][ 'b_concat_indices'] = valid_concat_sent_indices valid_set['data']['b_concat_sizes'] = valid_concat_sent_sizes if use_claim_evidences_comparison: training_all_evidences_indices, training_all_evidences_sizes = generate_concat_indices_for_claim( training_set['data']['b_np'], training_set['data']['b_sent_sizes'], Config.max_sentence_size, Config.max_sentences) training_set['data'][ 'b_concat_indices_for_h'] = training_all_evidences_indices training_set['data'][ 'b_concat_sizes_for_h'] = training_all_evidences_sizes valid_all_evidences_indices, valid_all_evidences_sizes = generate_concat_indices_for_claim( valid_set['data']['b_np'], valid_set['data']['b_sent_sizes'], Config.max_sentence_size, Config.max_sentences) valid_set['data'][ 'b_concat_indices_for_h'] = valid_all_evidences_indices valid_set['data'][ 'b_concat_sizes_for_h'] = valid_all_evidences_sizes X_dict = { 'X_train': training_set['data'], 'X_valid': valid_set['data'], 'y_valid': valid_set['label'], 'embedding': embeddings } y_train = training_set['label'] if hasattr(Config, 'training_dump'): with open(Config.training_dump, 'wb') as f: pickle.dump((X_dict, y_train), f, protocol=pickle.HIGHEST_PROTOCOL) if estimator is None: estimator = get_estimator(Config.estimator_name, Config.ckpt_folder) estimator.fit(X_dict, y_train) save_model(estimator, Config.model_folder, Config.pickle_name, logger) elif mode == 'test': # testing mode restore_param_required = estimator is None if estimator is None: estimator = load_model(Config.model_folder, Config.pickle_name) if estimator is None: estimator = get_estimator(Config.estimator_name, Config.ckpt_folder) vocab, embeddings = load_whole_glove(Config.glove_path) vocab = vocab_map(vocab) test_set, _, _, _, _ = embed_data_set_with_glove_2( Config.test_set_file, Config.db_path(), vocab_dict=vocab, glove_embeddings=embeddings, threshold_b_sent_num=Config.max_sentences, threshold_b_sent_size=Config.max_sentence_size, threshold_h_sent_size=Config.max_claim_size) h_sent_sizes = test_set['data']['h_sent_sizes'] h_sizes = np.ones(len(h_sent_sizes), np.int32) test_set['data']['h_sent_sizes'] = np.expand_dims(h_sent_sizes, 1) test_set['data']['h_sizes'] = h_sizes test_set['data']['h_np'] = np.expand_dims(test_set['data']['h_np'], 1) if use_extra_features: assert hasattr( Config, 'feature_path' ), "Config should has feature_path if Config.use_feature is True" test_claim_features, test_evidence_features = load_feature_by_data_set( Config.test_set_file, Config.feature_path, Config.max_sentences) test_set['data']['h_feats'] = test_claim_features test_set['data']['b_feats'] = test_evidence_features if use_numeric_feature: test_num_feat = number_feature(Config.test_set_file, Config.db_path(), Config.max_sentences) test_set['data']['num_feat'] = test_num_feat x_dict = {'X_test': test_set['data'], 'embedding': embeddings} if use_inter_evidence_comparison: test_concat_sent_indices, test_concat_sent_sizes = generate_concat_indices_for_inter_evidence( test_set['data']['b_np'], test_set['data']['b_sent_sizes'], Config.max_sentence_size, Config.max_sentences) test_set['data']['b_concat_indices'] = test_concat_sent_indices test_set['data']['b_concat_sizes'] = test_concat_sent_sizes if use_claim_evidences_comparison: test_all_evidences_indices, test_all_evidences_sizes = generate_concat_indices_for_claim( test_set['data']['b_np'], test_set['data']['b_sent_sizes'], Config.max_sentence_size, Config.max_sentences) test_set['data'][ 'b_concat_indices_for_h'] = test_all_evidences_indices test_set['data']['b_concat_sizes_for_h'] = test_all_evidences_sizes predictions = estimator.predict(x_dict, restore_param_required) generate_submission(predictions, test_set['id'], Config.test_set_file, Config.submission_file()) if 'label' in test_set: print_metrics(test_set['label'], predictions, logger) else: logger.error("Invalid argument --mode: " + mode + " Argument --mode should be either 'train’ or ’test’") return estimator