def post_process(infer_output, origin_img, image_file): """post process""" print("post process") print(infer_output[1]) # box_num indicates the number of targets detected in the picture box_num = infer_output[1][0, 0] print("box num ", box_num) box_info = infer_output[0].flatten() print("\n") print(box_info[0:6 * box_num].reshape(6, box_num)) scalex = utils.align_up128(origin_img.width) / MODEL_WIDTH scaley = utils.align_up16(origin_img.height) / MODEL_HEIGHT output_path = os.path.join("./outputs", os.path.basename(image_file)) origin_image = Image.open(image_file) draw = ImageDraw.Draw(origin_image) font = ImageFont.truetype("SourceHanSansCN-Normal.ttf", size=30) print("images:{}".format(image_file)) # Create a list to save Json results obj_res = [] # Inference result output print("======== inference results: =============") for n in range(int(box_num)): ind = int(box_info[5 * int(box_num) + n]) label = labels[ind] score = box_info[4 * int(box_num) + n] top_left_x = box_info[0 * int(box_num) + n] * scalex top_left_y = box_info[1 * int(box_num) + n] * scaley bottom_right_x = box_info[2 * int(box_num) + n] * scalex bottom_right_y = box_info[3 * int(box_num) + n] * scaley # Output the target name, category number, coordinate position, and detection rate in turn print("%s: class %d, box %d %d %d %d, score %f" % (label, ind, top_left_x, top_left_y, bottom_right_x, bottom_right_y, score)) # Mark the test results on the picture draw.line([(top_left_x, top_left_y), (bottom_right_x, top_left_y), (bottom_right_x, bottom_right_y), (top_left_x, bottom_right_y), (top_left_x, top_left_y)], fill=(0, 200, 100), width=2) draw.text((top_left_x, top_left_y), label, font=font, fill=255) # json data obj = {} obj['label'] = label obj['score'] = score points = {} points['lx'] = top_left_x points['ly'] = top_left_y points['rx'] = bottom_right_x points['ry'] = bottom_right_y obj['points'] = points obj_res.append(obj) #Save the final test result picture origin_image.save(output_path) return obj_res
def jpegd(self, image): """ jepg image to yuv image """ # Create conversion output image desc output_desc, out_buffer = self._gen_jpegd_out_pic_desc(image) ret = acl.media.dvpp_jpeg_decode_async(self._dvpp_channel_desc, image.data(), image.size, output_desc, self._stream) if ret != constants.ACL_ERROR_NONE: log_error("dvpp_jpeg_decode_async failed ret={}".format(ret)) return None ret = acl.rt.synchronize_stream(self._stream) if ret != constants.ACL_ERROR_NONE: log_error("dvpp_jpeg_decode_async failed ret={}".format(ret)) return None # Return the decoded AclImage instance stride_width = utils.align_up128(image.width) stride_height = utils.align_up16(image.height) stride_size = utils.yuv420sp_size(stride_width, stride_height) return AclImage(out_buffer, stride_width, stride_height, stride_size, constants.MEMORY_DVPP)
def post_process_big(infer_output, origin_img, image_file, out_target): """post process big""" print("post process") print(infer_output[1]) box_num = infer_output[1][0, 0] print("box num ", box_num) box_info = infer_output[0].flatten() print("\n") print(box_info[0:6 * box_num].reshape(6, box_num)) scalex = utils.align_up128(origin_img.width) / MODEL_WIDTH scaley = utils.align_up16(origin_img.height) / MODEL_HEIGHT output_path = os.path.join(out_target, os.path.basename(image_file)) origin_image = Image.open(image_file) draw = ImageDraw.Draw(origin_image) font = ImageFont.truetype("../SourceHanSansCN-Normal.ttf", size=30) print("images:{}".format(image_file)) print("======== inference results: =============") imagename = get_file_name(image_file) # Get the number in the name of the cropped picture x = imagename.split("_") row_num = (int)(x[0]) y = x[1].split(".") col_num = (int)(y[0]) obj_res = [] for n in range(int(box_num)): ind = int(box_info[5 * int(box_num) + n]) label = labels[ind] score = box_info[4 * int(box_num) + n] top_left_x = box_info[0 * int(box_num) + n] * scalex top_left_y = box_info[1 * int(box_num) + n] * scaley bottom_right_x = box_info[2 * int(box_num) + n] * scalex bottom_right_y = box_info[3 * int(box_num) + n] * scaley print("%s: class %d, box %d %d %d %d, score %f" % (label, ind, top_left_x, top_left_y, bottom_right_x, bottom_right_y, score)) draw.line([(top_left_x, top_left_y), (bottom_right_x, top_left_y), (bottom_right_x, bottom_right_y), (top_left_x, bottom_right_y), (top_left_x, top_left_y)], fill=(0, 200, 100), width=2) draw.text((top_left_x, top_left_y), label, font=font, fill=255) # Big picture mapping coordinates big_lx = top_left_x + (col_num - 1) * 832 big_ly = top_left_y + (row_num - 1) * 832 big_rx = bottom_right_x + (col_num - 1) * 832 big_ry = bottom_right_y + (row_num - 1) * 832 #json data obj = {} obj['label'] = label obj['score'] = score points = {} points['lx'] = big_lx points['ly'] = big_ly points['rx'] = big_rx points['ry'] = big_ry obj['points'] = points obj_res.append(obj) origin_image.save(output_path) return obj_res