示例#1
0
def makefile(infile,outfilename):    
    rfile = hdf.File(infile, 'r')
    heights = rfile['z_coords'].value[1:]
    tempk = np.zeros_like(heights)
    press = np.zeros_like(heights)
    vapor = np.zeros_like(heights)
    for i in range(len(heights)):
        tempk[i] = np.mean(rfile['tempk'].value[0,i+1,:,:])
        press[i] = np.mean(rfile['press'].value[0,i+1,:,:])
        vapor[i] = np.mean(rfile['vapor'].value[0,i+1,:,:])

    rho = (press*100.)/ (287.*tempk)

    relhum = rfile['relhum'].value[0,1:,0,0]
    u = rfile['u'].value[0,1:,0,0]
    v = rfile['v'].value[0,1:,0,0]

    data = {'T':tempk, 'RH':relhum, 'p':press*100.}
    dewpt = atmos.calculate('Td', **data)
    
    sat = atmos.calculate('rvs', **data) * 1000.
    
    dz = np.zeros_like(heights)
    dz[0:-1] = np.diff(heights)
    dz[-1] = dz[-2]
    
    vsat = sat * rho * dz
    vact = vapor * rho * dz
    
    lows = np.where(press > 850.)
    mids = np.logical_and(press < 850, press > 500)
    highs = np.where(press < 500)
    
    lowsat = 100. * (np.sum(vact[lows]) / np.sum(vsat[lows]))
    midsat = 100. * (np.sum(vact[mids]) / np.sum(vsat[mids]))
    highsat = 100. * (np.sum(vact[highs]) / np.sum(vsat[highs]))
    
    print outfilename
    print lowsat, midsat, highsat
    print ' ' 
    
    outfile = Dataset(outfilename, "w", format="NETCDF4")
    height = outfile.createDimension("height", len(heights))
    dim = outfile.createVariable('height',"f4",('height'))
    outfile.variables['height'][:]=heights
    a = outfile.createVariable('temp',"f4",('height'))
    outfile.variables['temp'][:]=tempk-273.15
    aa = outfile.createVariable('press',"f4",('height'))
    outfile.variables['press'][:]=press
    a = outfile.createVariable('dewpoint',"f4",('height'))
    outfile.variables['dewpoint'][:]=dewpt-273.15
    a = outfile.createVariable('v',"f4",('height'))
    outfile.variables['v'][:]=v
    a = outfile.createVariable('u',"f4",('height'))
    outfile.variables['u'][:]=u
    outfile.close()
示例#2
0
 def get_metcro2d_rh(self, lay=None):
     import atmos
     data = {
         'T': self.dset['TEMP2'][:].compute().values,
         'rv': self.dset['Q2'][:].compute().values,
         'p': self.dset['PRSFC'][:].compute().values
     }
     if lay is None:
         a = atmos.calculate('RH', **data)[:, :, :, :].squeeze()
     else:
         atmos.calculate('RH', **data)[:, lay, :, :].squeeze()
     return a
示例#3
0
def get_air_density(t):
    """
    Returns air density given the temperature
    :param t:
    :return:
    """
    return atmos.calculate('rho', Tv=t + 273.15, p=101325)
示例#4
0
def dMarkFreezRain_(pr,
                    ps,
                    tas,
                    t925,
                    t850,
                    t700,
                    q925,
                    q850,
                    q700,
                    pr_min=1.8e-5,
                    t_cold=273.24,
                    t_melt=272.51,
                    rh_melt=89.,
                    h_cold=6900):
    import atmos
    aa = _rl(pr) > pr_min
    bb = _rl(tas) <= t_cold
    ta = np.vstack((_rl(t925), _rl(t850), _rl(t700)))
    qa = np.vstack((_rl(q925), _rl(q850), _rl(q700)))
    prl = np.asarray([92500, 85000, 70000]).reshape((3, 1))
    rh = atmos.calculate('RH', qv=qa, T=ta, p=prl)
    cc = ta > t_melt
    dd = rh >= rh_melt
    ee = (_rl(ps) - h_cold - prl) >= 0
    ff = np.any(np.logical_and(cc, dd, ee), axis=0)
    return np.logical_and(aa, bb, ff)
def mf2rh(P, T, mf):
    mix2mass = (18 / (0.8 * 28 + 0.2 * 32))
    W = np.copy(mf)
    W[W < 0] = 0
    W[:, P < 101325 * np.exp(-3)] = 0
    RH = atmos.calculate('RH', T=T, p=P, rt=W * mix2mass)
    RH[(RH < 0) | (W == 0)] = 0
    return RH
示例#6
0
def get_abs_humidity(sense):
    """Get the absolute humidity,
    handles unit conversions(why does sense hat not use SI units?)"""

    # Get relative humidity
    relh = sense.get_humidity()

    # Get pressure, and convert from mB to Pa
    pressure = sense.get_pressure() * 100

    # Get temperature, and convert from degrees Celsius to kelvin
    temp = sense.get_temperature() + 273.15

    # Get absolute humidity
    abshumidity = atmos.calculate("AH", RH=relh, T=temp, p=pressure)

    # Why is the SI unit the KILOgram?
    return abshumidity * 1000
示例#7
0
    T   = nc.variables['T'][:].squeeze() 
    nc.close()    
    
    # buscando indices de niveles superior e inferior
    us = np.nanmean( (u[:,zs:zi+1,:,:].copy())**2, axis=0)
    del u
    vs = np.nanmean( (v[:,zs:zi+1,:,:].copy())**2, axis=0)
    del v    
    ms = np.sqrt(us + vs)
    qs = np.nanmean( q[:,zs:zi+1,:,:].copy(), axis=0)
    del q 
    ts = np.nanmean( T[:,zs:zi+1,:,:].copy(), axis=0)
    del T

    # calculando rho
    rho = atmos.calculate('rho',p = zl*100.0, Tv = ts)
    
    # calculando el wind speed
    ws.append ( (np.nansum( rho * ms, axis=0)) / (np.nansum(rho, axis=0) ) )
    # calculando Presion
    Ps.append ( (np.nansum( rho * ms * zl, axis=0 )) / (np.nansum(rho * ms, axis=0) ) )
    # calculando latitud
    ls_top = np.nansum ( rho * ms, axis=0) * y
    ls_top = np.nansum ( ls_top[ys:yi,:], axis = 0 )
    
    ls_inf = np.nansum ( rho * ms, axis=0)
    ls_inf = np.nansum ( ls_inf[ys:yi,:], axis = 0 )
    
    ls.append( ls_top/ls_inf )
    
    t.append(f[i][7:-3])
示例#8
0
def calculateAbsoluteHumidity(rel_humidity, temperature):
    temp_kelvin = temperature + 273.15
    absolute_humidity = calculate('AH', RH=rel_humidity, p=1e5, T=temp_kelvin, debug=True)[0]
    # convert from kg/m^3 to g/m^3
    absolute_humidity = absolute_humidity * 1000
    return absolute_humidity
示例#9
0
from matplotlib import gridspec
import matplotlib.image as mpimg



filename = 'KWAJEX_Soundings_11Aug1999/sounding_11aug1999_10mb_control.txt'
var = np.loadtxt(filename, dtype=float)
p = var[:,0]
T = var[:,1]
rv = var[:,2]*1000.
u = var[:,3]
v = var[:,4]


data = {'T':T+273.15, 'rv':rv/1000., 'p':p*100.}
Td = atmos.calculate('Td', **data) -273.15
Tv = atmos.calculate('Tv', **data)
data = {'Tv':Tv, 'rv':rv/1000., 'p':p*100.}
rho = atmos.calculate('rho', **data)

dpdz = rho * 9.8
heights = np.zeros_like(p)
heights[0] = 10.0
for i in range(1,len(heights)):
    heights[i] = ((((p[i-1] - p[i])*100.)) / dpdz[i-1]) + heights[i-1]

p=p*units.hPa45
T=T*units.degC
Td=Td*units.degC

fig = plt.figure(figsize=(9, 9))45
示例#10
0
    'ccmap': "viridis_r",
    'llevels': np.arange(970, 1040, 4),
    'llevels2': [1000],
    'time_index': tindex,
    'times': times,
    'skip': skip,
    'mapscale': mapscale,
    'mapparms': mapparms,
    'fontsize': fontsize
}

if model == 'SMN_WRF':
    cffield = data['TMP_GDS3_HTGL']
    cffield.values = 273.15 + atmos.calculate(
        'thetae',
        T=data['TMP_GDS3_HTGL'].values,
        p=data['PRES_GDS3_SFC'].values,
        qv=data['SPF_H_GDS3_HTGL'].values)
    cffield.attrs['long_name'] = '2 m equivalent potential temperature'
    cffield.attrs['units'] = 'K'
    lfield = data['PRMSL_GDS3_MSL'] / 100.
    lfield2 = topo
    ufld = data['U_GRD_GDS3_HTGL'] * 1.94
    vfld = data['V_GRD_GDS3_HTGL'] * 1.94
else:
    cffield = getvar(files,
                     params['cfield'],
                     timeidx=params['time_index'],
                     units='K')
    cffield = cffield.isel(bottom_top=0)
    lfield = getvar(files, 'slp', timeidx=params['time_index'], units='hPa')
示例#11
0
def rho_fr_t_q_p_(t, q, p):
    import atmos
    return atmos.calculate('rho', T=_rl(t), qv=_rl(q), p=_rl(p))