def test_plot_learning_curve(): """Assert that the plot_learning_curve method work as intended.""" atom = ATOMRegressor(X_reg, y_reg, random_state=1) pytest.raises(NotFittedError, atom.plot_learning_curve) atom.run("LGB") atom.delete() # Clear the pipeline to allow ts atom.train_sizing(["Tree", "LGB"], metric="max_error", bagging=4) atom.plot_learning_curve(display=False) atom.train_sizing(["Tree", "LGB"], metric="max_error") atom.plot_learning_curve(display=False)
def test_plot_successive_halving(): """Assert that the plot_successive_halving method work as intended.""" atom = ATOMRegressor(X_reg, y_reg, random_state=1) pytest.raises(NotFittedError, atom.plot_successive_halving) atom.run("LGB") atom.delete() # Clear the pipeline to allow sh atom.successive_halving(models=["Tree", "Bag", "RF", "LGB"], bagging=4) pytest.raises(ValueError, atom.plot_successive_halving, models="unknown") pytest.raises(ValueError, atom.plot_successive_halving, models="BR") pytest.raises(ValueError, atom.plot_successive_halving, metric="unknown") pytest.raises(ValueError, atom.plot_successive_halving, metric=-1) pytest.raises(ValueError, atom.plot_successive_halving, metric=1) pytest.raises(ValueError, atom.plot_successive_halving, metric="roc_auc") atom.plot_successive_halving(display=False) atom.successive_halving(models=["Tree", "Bag", "RF", "LGB"]) atom.plot_successive_halving(display=False)