示例#1
0
def get_wf_deformations(structure,
                        deformations,
                        name="deformation",
                        vasp_input_set=None,
                        vasp_cmd="vasp",
                        db_file=None,
                        tag="",
                        copy_vasp_outputs=True,
                        metadata=None):
    """
    Returns a structure deformation workflow.

    Firework 1 : structural relaxation
    Firework 2 - len(deformations): Deform the optimized structure and run static calculations.


    Args:
        structure (Structure): input structure to be optimized and run
        deformations (list of 3x3 array-likes): list of deformations
        name (str): some appropriate name for the transmuter fireworks.
        vasp_input_set (DictVaspInputSet): vasp input set for static deformed structure calculation.
        vasp_cmd (str): command to run
        db_file (str): path to file containing the database credentials.
        tag (str): some unique string that will be appended to the names of the fireworks so that
            the data from those tagged fireworks can be queried later during the analysis.
        copy_vasp_outputs (bool): whether or not copy the outputs from the previous calc(usually
            structure optimization) before the transmuter fireworks.
        metadata (dict): meta data

    Returns:
        Workflow
    """

    fws, parents = [], []

    vasp_input_set = vasp_input_set or MPStaticSet(structure, force_gamma=True)

    # Deformation fireworks with the task to extract and pass stress-strain appended to it.
    for n, deformation in enumerate(deformations):
        fw = TransmuterFW(name="{} {} {}".format(tag, name, n),
                          structure=structure,
                          transformations=['DeformStructureTransformation'],
                          transformation_params=[{
                              "deformation":
                              deformation.tolist()
                          }],
                          vasp_input_set=vasp_input_set,
                          copy_vasp_outputs=copy_vasp_outputs,
                          parents=parents,
                          vasp_cmd=vasp_cmd,
                          db_file=db_file)
        fws.append(fw)

    wfname = "{}:{}".format(structure.composition.reduced_formula, name)

    return Workflow(fws, name=wfname, metadata=metadata)
示例#2
0
def get_wf_deformations(
    structure,
    deformations,
    name="deformation",
    vasp_input_set=None,
    vasp_cmd="vasp",
    db_file=None,
    tag="",
    copy_vasp_outputs=True,
    metadata=None,
):
    """
    Returns a structure deformation workflow.

    Worfklow consists of: len(deformations) in which the structure is deformed followed
    by a static calculation.

    Args:
        structure (Structure): input structure to be optimized and run
        deformations (list of 3x3 array-likes): list of deformations
        name (str): some appropriate name for the transmuter fireworks.
        vasp_input_set (DictVaspInputSet): vasp input set for static deformed structure
            calculation.
        vasp_cmd (str): command to run
        db_file (str): path to file containing the database credentials.
        tag (str): some unique string that will be appended to the names of the
            fireworks so that the data from those tagged fireworks can be queried later
            during the analysis.
        copy_vasp_outputs (bool): whether or not copy the outputs from the previous calc
            (usually structure optimization) before the transmuter fireworks.
        metadata (dict): meta data

    Returns:
        Workflow
    """
    vasp_input_set = vasp_input_set or MPStaticSet(structure, force_gamma=True)

    fws = []
    for n, deformation in enumerate(deformations):
        fw = TransmuterFW(
            name=f"{tag} {name} {n}",
            structure=structure,
            transformations=["DeformStructureTransformation"],
            transformation_params=[{
                "deformation": deformation.tolist()
            }],
            vasp_input_set=vasp_input_set,
            copy_vasp_outputs=copy_vasp_outputs,
            vasp_cmd=vasp_cmd,
            db_file=db_file,
        )
        fws.append(fw)

    wfname = f"{structure.composition.reduced_formula}:{name}"

    return Workflow(fws, name=wfname, metadata=metadata)
示例#3
0
def get_slab_fw(slab,
                transmuter=False,
                db_file=None,
                vasp_input_set=None,
                parents=None,
                vasp_cmd="vasp",
                name="",
                add_slab_metadata=True,
                user_incar_settings=None):
    """
    Function to generate a a slab firework.  Returns a TransmuterFW if
    bulk_structure is specified, constructing the necessary transformations
    from the slab and slab generator parameters, or an OptimizeFW if only a
    slab is specified.

    Args:
        slab (Slab or Structure): structure or slab corresponding
            to the slab to be calculated
        transmuter (bool): whether or not to use a TransmuterFW based
            on slab params, if this option is selected, input slab must
            be a Slab object (as opposed to Structure)
        vasp_input_set (VaspInputSet): vasp_input_set corresponding to
            the slab calculation
        parents (Fireworks or list of ints): parent FWs
        db_file (string): path to database file
        vasp_cmd (string): vasp command
        name (string): name of firework
        add_slab_metadata (bool): whether to add slab metadata to task doc

    Returns:
        Firework corresponding to slab calculation
    """
    vasp_input_set = vasp_input_set or MPSurfaceSet(
        slab, user_incar_settings=user_incar_settings)

    # If a bulk_structure is specified, generate the set of transformations,
    # else just create an optimize FW with the slab
    if transmuter:
        if not isinstance(slab, Slab):
            raise ValueError(
                "transmuter mode requires slab to be a Slab object")

        # Get transformation from oriented bulk and slab
        oriented_bulk = slab.oriented_unit_cell
        slab_trans_params = get_slab_trans_params(slab)
        trans_struct = SlabTransformation(**slab_trans_params)
        slab_from_bulk = trans_struct.apply_transformation(oriented_bulk)

        # Ensures supercell construction
        supercell_trans = SupercellTransformation.from_scaling_factors(
            round(slab.lattice.a / slab_from_bulk.lattice.a),
            round(slab.lattice.b / slab_from_bulk.lattice.b))

        # Get site properties, set velocities to zero if not set to avoid
        # custodian issue
        site_props = slab.site_properties
        if 'velocities' not in site_props:
            site_props['velocities'] = [0. for s in slab]

        # Get adsorbates for InsertSitesTransformation
        if "adsorbate" in slab.site_properties.get("surface_properties", ""):
            ads_sites = [
                site for site in slab
                if site.properties["surface_properties"] == "adsorbate"
            ]
        else:
            ads_sites = []
        transformations = [
            "SlabTransformation", "SupercellTransformation",
            "InsertSitesTransformation", "AddSitePropertyTransformation"
        ]
        trans_params = [
            slab_trans_params, {
                "scaling_matrix": supercell_trans.scaling_matrix
            }, {
                "species": [site.species_string for site in ads_sites],
                "coords": [site.frac_coords for site in ads_sites]
            }, {
                "site_properties": site_props
            }
        ]
        fw = TransmuterFW(name=name,
                          structure=oriented_bulk,
                          transformations=transformations,
                          transformation_params=trans_params,
                          copy_vasp_outputs=True,
                          db_file=db_file,
                          vasp_cmd=vasp_cmd,
                          parents=parents,
                          vasp_input_set=vasp_input_set)
    else:
        fw = OptimizeFW(name=name,
                        structure=slab,
                        vasp_input_set=vasp_input_set,
                        vasp_cmd=vasp_cmd,
                        db_file=db_file,
                        parents=parents,
                        job_type="normal")
    # Add slab metadata
    if add_slab_metadata:
        parent_structure_metadata = get_meta_from_structure(
            slab.oriented_unit_cell)
        fw.tasks[-1]["additional_fields"].update({
            "slab":
            slab,
            "parent_structure":
            slab.oriented_unit_cell,
            "parent_structure_metadata":
            parent_structure_metadata
        })
    return fw
示例#4
0
def get_slab_fw(slab,
                bulk_structure=None,
                slab_gen_params={},
                db_file=None,
                vasp_input_set=None,
                parents=None,
                vasp_cmd="vasp",
                name=""):
    """
    Function to generate a a slab firework.  Returns a TransmuterFW if bulk_structure is specified,
    constructing the necessary transformations from the slab and slab generator parameters,
    or an OptimizeFW if only a slab is specified.

    Args:
        slab (Slab or Structure): structure or slab corresponding
            to the slab to be calculated
        bulk_structure (Structure): bulk structure corresponding to slab, if
            provided, slab firework is constructed as a TransmuterFW using
            the necessary transformations to get the slab from the bulk
        slab_gen_params (dict): dictionary of slab generation parameters
            used to generate the slab, necessary to get the slab
            that corresponds to the bulk structure
        vasp_input_set (VaspInputSet): vasp_input_set corresponding to
            the slab calculation
        parents (Fireworks or list of ints): parent FWs
        db_file (string): path to database file
        vasp_cmd (string): vasp command

    Returns:
        Firework
    """
    vasp_input_set = vasp_input_set or MVLSlabSet(slab)

    # If a bulk_structure is specified, generate the set of transformations, else
    # just create an optimize FW with the slab
    if bulk_structure:
        if not isinstance(slab, Slab):
            raise ValueError(
                "structure input to get_slab_fw requires slab to be a slab object!"
            )
        slab_trans_params = {
            "miller_index": slab.miller_index,
            "shift": slab.shift
        }
        slab_trans_params.update(slab_gen_params)

        # Get supercell parameters
        trans_struct = SlabTransformation(**slab_trans_params)
        slab_from_bulk = trans_struct.apply_transformation(bulk_structure)
        supercell_trans = SupercellTransformation.from_scaling_factors(
            round(slab.lattice.a / slab_from_bulk.lattice.a),
            round(slab.lattice.b / slab_from_bulk.lattice.b))

        # Get adsorbates for InsertSitesTransformation
        if "adsorbate" in slab.site_properties.get("surface_properties",
                                                   [None]):
            ads_sites = [
                site for site in slab
                if site.properties["surface_properties"] == "adsorbate"
            ]
        else:
            ads_sites = []
        transformations = [
            "SlabTransformation", "SupercellTransformation",
            "InsertSitesTransformation", "AddSitePropertyTransformation"
        ]
        trans_params = [
            slab_trans_params, {
                "scaling_matrix": supercell_trans.scaling_matrix
            }, {
                "species": [site.species_string for site in ads_sites],
                "coords": [site.frac_coords for site in ads_sites]
            }, {
                "site_properties": slab.site_properties
            }
        ]
        return TransmuterFW(name=name,
                            structure=bulk_structure,
                            transformations=transformations,
                            transformation_params=trans_params,
                            copy_vasp_outputs=True,
                            db_file=db_file,
                            vasp_cmd=vasp_cmd,
                            parents=parents,
                            vasp_input_set=vasp_input_set)
    else:
        return OptimizeFW(name=name,
                          structure=slab,
                          vasp_input_set=vasp_input_set,
                          vasp_cmd=vasp_cmd,
                          db_file=db_file,
                          parents=parents,
                          job_type="normal")