def test_single_Vasp_dbinsertion(self): # add the workflow structure = self.struct_si # instructs to use db_file set by FWorker, see env_chk my_wf = get_wf(structure, "optimize_only.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={ "vasp_cmd": VASP_CMD, "db_file": ">>db_file<<" }) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) # add an msonable object to additional fields my_wf.fws[0].tasks[-1]['additional_fields'].update( {"test_additional_field": self.struct_si}) self.lp.add_wf(my_wf) # run the workflow rapidfire(self.lp, fworker=_fworker) d = self.get_task_collection().find_one() self._check_run(d, mode="structure optimization") self._check_run(d, mode="additional field") wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()]))
def test_single_Vasp_dbinsertion(self): # add the workflow structure = self.struct_si # instructs to use db_file set by FWorker, see env_chk my_wf = get_wf(structure, "optimize_only.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={"vasp_cmd": VASP_CMD, "db_file": ">>db_file<<"}) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) # add an msonable object to additional fields my_wf.fws[0].tasks[-1]['additional_fields'].update( {"test_additional_field": self.struct_si}) self.lp.add_wf(my_wf) # run the workflow # set the db_file variable rapidfire(self.lp, fworker=FWorker(env={"db_file": os.path.join(db_dir, "db.json")})) d = self.get_task_collection().find_one() self._check_run(d, mode="structure optimization") self._check_run(d, mode="additional field") wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()]))
def wf_scan_opt(structure, c=None): c = c or {} vasp_cmd = c.get("VASP_CMD", VASP_CMD) db_file = c.get("DB_FILE", DB_FILE) user_incar_settings = c.get("USER_INCAR_SETTINGS", {}) half_kpts = c.get("HALF_KPOINTS_FIRST_RELAX", HALF_KPOINTS_FIRST_RELAX) ediffg = user_incar_settings.get("EDIFFG", -0.05) wf = get_wf(structure, "optimize_only.yaml", vis=MVLScanRelaxSet(structure, user_incar_settings=user_incar_settings), common_params={ "vasp_cmd": vasp_cmd, "db_file": db_file }) wf = use_custodian(wf, custodian_params={ "ediffg": ediffg, "max_force_threshold": 0, "half_kpts_first_relax": half_kpts, "job_type": "metagga_opt_run", "vasp_cmd": vasp_cmd }) wf = add_common_powerups(wf, c) if c.get("ADD_WF_METADATA", ADD_WF_METADATA): wf = add_wf_metadata(wf, structure) if c.get("REMOVE_WAVECAR", REMOVE_WAVECAR): wf = clean_up_files(wf) return wf
def test_bandgap_check_Vasp(self): # add the workflow structure = self.struct_si # instructs to use db_file set by FWorker, see env_chk my_wf = get_wf(structure, "bandstructure.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={ "vasp_cmd": VASP_CMD, "db_file": ">>db_file<<" }) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) my_wf = add_namefile(my_wf) # add a slug of fw-name to output files my_wf = add_bandgap_check(my_wf, check_bandgap_params={"max_gap": 0.1}, fw_name_constraint="structure optimization") self.lp.add_wf(my_wf) # run the workflow # set the db_file variable rapidfire(self.lp, fworker=_fworker) # structure optimization should be completed self.assertEqual( self.lp.fireworks.find_one({"name": "Si-structure optimization"}, {"state": 1})["state"], "COMPLETED") self.assertEqual( self.lp.fireworks.find_one({"name": "Si-static"}, {"state": 1})["state"], "DEFUSED")
def test_bandgap_check_Vasp(self): # add the workflow structure = self.struct_si # instructs to use db_file set by FWorker, see env_chk my_wf = get_wf(structure, "bandstructure.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={"vasp_cmd": VASP_CMD, "db_file": ">>db_file<<"}) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) my_wf = add_namefile(my_wf) # add a slug of fw-name to output files my_wf = add_bandgap_check(my_wf, check_bandgap_params={"max_gap": 0.1}, fw_name_constraint="structure optimization") self.lp.add_wf(my_wf) # run the workflow # set the db_file variable rapidfire(self.lp, fworker=FWorker(env={"db_file": os.path.join(db_dir, "db.json")})) # structure optimization should be completed self.assertEqual(self.lp.fireworks.find_one( {"name": "Si-structure optimization"}, {"state": 1})["state"], "COMPLETED") self.assertEqual(self.lp.fireworks.find_one( {"name": "Si-static"}, {"state": 1})["state"], "DEFUSED")
def _single_vasp_lobster(self, delete_wavecars=False, user_supplied_basis=None, fake=True): # add the workflow structure = self.struct_si my_wf = get_wf_lobster(structure=structure, c={ "vasp_cmd": VASP_CMD, "DB_FILE": None }, user_kpoints_settings={"grid_density": 100}, delete_all_wavecars=delete_wavecars, user_supplied_basis=user_supplied_basis) if fake: my_wf = use_fake_vasp(my_wf, refs_dirs_si_vasp) my_wf = use_fake_lobster(my_wf, refs_dirs_si_lobster) else: my_wf = use_custodian(my_wf) self.lp.add_wf(my_wf) # run the workflow rapidfire(self.lp) fw = self.lp.get_fw_by_id(fw_id=1) with open(os.path.join(fw.launches[-1].launch_dir, "task_lobster.json")) as f: d = json.load(f) self._check_run(d, mode="lobsternormal", database=False) wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()]))
def test_trackers(self): # add the workflow structure = self.struct_si my_wf = get_wf(structure, "optimize_only.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={"vasp_cmd": VASP_CMD}) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) my_wf = add_trackers(my_wf) self.lp.add_wf(my_wf) # run the workflow rapidfire(self.lp, fworker=_fworker) for x in self.lp.get_tracker_data(1): for t in x["trackers"]: self.assertGreater(len(t.content.split("\n")), 20) wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()]))
def _single_lobster_db_insertion(self, fake=True): structure = self.struct_mp my_wf = get_wf_lobster_test_basis( structure=structure, c={ "vasp_cmd": VASP_CMD, "DB_FILE": DB_FILE }, user_kpoints_settings={"grid_density": 100}, delete_all_wavecars=False) if fake: my_wf = use_fake_vasp(my_wf, ref_dirs=refs_dirs_complex_vasp) my_wf = use_fake_lobster(my_wf, ref_dirs=refs_dirs_complex_lobster) else: my_wf = use_custodian(my_wf) self.lp.add_wf(my_wf) # run the workflow rapidfire(self.lp) d = self.get_task_collection(coll_name="lobster").find_one( filter={"basis_id": 1}) self._check_run(d, mode="lobsternormal") wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()]))
def _single_lobster_db_insertion(self, delete_wavecars=False, user_supplied_basis=None, fake=True): structure = self.struct_si my_wf = get_wf_lobster(structure=structure, c={ "vasp_cmd": VASP_CMD, "DB_FILE": DB_FILE }, user_kpoints_settings={"grid_density": 100}, delete_all_wavecars=delete_wavecars, user_supplied_basis=user_supplied_basis, additional_outputs=["ICOOPLIST.lobster"]) if fake: my_wf = use_fake_vasp(my_wf, refs_dirs_si_vasp) my_wf = use_fake_lobster(my_wf, refs_dirs_si_lobster) else: my_wf = use_custodian(my_wf) self.lp.add_wf(my_wf) # run the workflow rapidfire(self.lp) d = self.get_task_collection(coll_name="lobster").find_one() if delete_wavecars: self._check_run(d, mode="lobsternormal_delete_wavecars") else: self._check_run(d, mode="lobsternormal") wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()]))
def test_chgcar_db_read(self): # add the workflow structure = self.struct_si # instructs to use db_file set by FWorker, see env_chk my_wf = get_wf(structure, "static_only.yaml", vis=MPStaticSet(structure, force_gamma=True), common_params={"vasp_cmd": VASP_CMD, "db_file": ">>db_file<<"}) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) # set the flags for storing charge densties my_wf.fws[0].tasks[-1]["parse_chgcar"] = True my_wf.fws[0].tasks[-1]["parse_aeccar"] = True self.lp.add_wf(my_wf) # run the workflow # set the db_file variable rapidfire(self.lp, fworker=FWorker(env={"db_file": os.path.join(db_dir, "db.json")})) d = self.get_task_collection().find_one() self._check_run(d, mode="static") wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()])) chgcar_fs_id = d["calcs_reversed"][0]["chgcar_fs_id"] accar0_fs_id = d["calcs_reversed"][0]["aeccar0_fs_id"] accar2_fs_id = d["calcs_reversed"][0]["aeccar2_fs_id"] self.assertTrue(bool(chgcar_fs_id)) self.assertTrue(bool(accar0_fs_id)) self.assertTrue(bool(accar2_fs_id))
def test_single_Vasp_dbinsertion(self): # add the workflow structure = self.struct_si # instructs to use db_file set by FWorker, see env_chk my_wf = get_wf(structure, "optimize_only.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={ "vasp_cmd": VASP_CMD, "db_file": ">>db_file<<" }) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) self.lp.add_wf(my_wf) # run the workflow # set the db_file variable rapidfire( self.lp, fworker=FWorker(env={"db_file": os.path.join(db_dir, "db.json")})) d = self.get_task_collection().find_one() self._check_run(d, mode="structure optimization") wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()]))
def test_use_scratch_dir(self): my_wf = self._copy_wf(self.bs_wf) my_wf = use_custodian(my_wf) my_wf = use_scratch_dir(my_wf, ">>scratch_dir<<") found = 0 for fw in my_wf.fws: for t in fw.tasks: if 'RunVaspCustodian' in str(t): self.assertEqual(t["scratch_dir"], ">>scratch_dir<<") found += 1 self.assertEqual(found, 4)
def test_bandstructure_Vasp(self): # add the workflow structure = self.struct_si # instructs to use db_file set by FWorker, see env_chk my_wf = get_wf(structure, "bandstructure.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={ "vasp_cmd": VASP_CMD, "db_file": ">>db_file<<" }) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) my_wf = add_namefile(my_wf) # add a slug of fw-name to output files self.lp.add_wf(my_wf) # run the workflow # set the db_file variable rapidfire( self.lp, fworker=FWorker(env={"db_file": os.path.join(db_dir, "db.json")})) # make sure the structure relaxation ran OK d = self.get_task_collection().find_one( {"task_label": "structure optimization"}, sort=[("_id", DESCENDING)]) self._check_run(d, mode="structure optimization") # make sure the static run ran OK d = self.get_task_collection().find_one({"task_label": "static"}, sort=[("_id", DESCENDING)]) self._check_run(d, mode="static") # make sure the uniform run ran OK d = self.get_task_collection().find_one({"task_label": "nscf uniform"}, sort=[("_id", DESCENDING)]) self._check_run(d, mode="nscf uniform") # make sure the uniform run ran OK d = self.get_task_collection().find_one({"task_label": "nscf line"}, sort=[("_id", DESCENDING)]) self._check_run(d, mode="nscf line") wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()]))
def _run_scan_relax(self, wf, dir_name): if not VASP_CMD: wf = use_fake_vasp(wf, { "SCAN structure optimization": os.path.join(reference_dir, dir_name) }, check_kpoints=False, check_potcar=False, clear_inputs=False, check_incar=False) else: wf = use_custodian(wf) wf = use_potcar_spec(wf) self.lp.add_wf(wf) # run the workflow rapidfire(self.lp, fworker=_fworker)
def test_single_Vasp_dbinsertion(self): # add the workflow structure = self.struct_si # instructs to use db_file set by FWorker, see env_chk my_wf = get_wf(structure, "optimize_only.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={"vasp_cmd": VASP_CMD, "db_file": ">>db_file<<"}) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) self.lp.add_wf(my_wf) # run the workflow # set the db_file variable rapidfire(self.lp, fworker=FWorker(env={"db_file": os.path.join(db_dir, "db.json")})) d = self._get_task_collection().find_one() self._check_run(d, mode="structure optimization")
def test_single_Vasp(self): # add the workflow structure = self.struct_si my_wf = get_wf(structure, "optimize_only.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={"vasp_cmd": VASP_CMD}) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) self.lp.add_wf(my_wf) # run the workflow rapidfire(self.lp, fworker=_fworker) d = self.get_task_collection().find_one({"task_label": "structure optimization"}) self._check_run(d, mode="structure optimization") wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()]))
def test_single_Vasp(self): # add the workflow structure = self.struct_si my_wf = get_wf(structure, "optimize_only.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={"vasp_cmd": VASP_CMD}) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) self.lp.add_wf(my_wf) # run the workflow rapidfire(self.lp) fw = self.lp.get_fw_by_id(1) with open(os.path.join(fw.launches[-1].launch_dir, "task.json")) as f: d = json.load(f) self._check_run(d, mode="structure optimization")
def test_trackers(self): # add the workflow structure = self.struct_si my_wf = get_wf(structure, "optimize_only.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={"vasp_cmd": VASP_CMD}) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) my_wf = add_trackers(my_wf) self.lp.add_wf(my_wf) # run the workflow rapidfire(self.lp) for x in self.lp.get_tracker_data(1): for t in x["trackers"]: self.assertGreater(len(t.content.split("\n")), 20)
def test_bandstructure_Vasp(self): # add the workflow structure = self.struct_si # instructs to use db_file set by FWorker, see env_chk my_wf = get_wf(structure, "bandstructure.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={"vasp_cmd": VASP_CMD, "db_file": ">>db_file<<"}) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) my_wf = add_namefile(my_wf) # add a slug of fw-name to output files self.lp.add_wf(my_wf) # run the workflow # set the db_file variable rapidfire(self.lp, fworker=FWorker(env={"db_file": os.path.join(db_dir, "db.json")})) # make sure the structure relaxation ran OK d = self.get_task_collection().find_one({"task_label": "structure optimization"}, sort=[("_id", DESCENDING)]) self._check_run(d, mode="structure optimization") # make sure the static run ran OK d = self.get_task_collection().find_one({"task_label": "static"}, sort=[("_id", DESCENDING)]) self._check_run(d, mode="static") # make sure the uniform run ran OK d = self.get_task_collection().find_one({"task_label": "nscf uniform"}, sort=[("_id", DESCENDING)]) self._check_run(d, mode="nscf uniform") # make sure the uniform run ran OK d = self.get_task_collection().find_one({"task_label": "nscf line"}, sort=[("_id", DESCENDING)]) self._check_run(d, mode="nscf line") wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()]))
def test_single_Vasp(self): # add the workflow structure = self.struct_si my_wf = get_wf(structure, "optimize_only.yaml", vis=MPRelaxSet(structure, force_gamma=True), common_params={"vasp_cmd": VASP_CMD}) if not VASP_CMD: my_wf = use_fake_vasp(my_wf, ref_dirs_si) else: my_wf = use_custodian(my_wf) self.lp.add_wf(my_wf) # run the workflow rapidfire(self.lp) fw = self.lp.get_fw_by_id(1) with open(os.path.join(fw.launches[-1].launch_dir, "task.json")) as f: d = json.load(f) self._check_run(d, mode="structure optimization") wf = self.lp.get_wf_by_fw_id(1) self.assertTrue(all([s == 'COMPLETED' for s in wf.fw_states.values()]))
def wf_scan_opt(structure, c=None): c = c or {} vasp_cmd = c.get("VASP_CMD", VASP_CMD) db_file = c.get("DB_FILE", DB_FILE) user_incar_settings = c.get("USER_INCAR_SETTINGS", {}) half_kpts = c.get("HALF_KPOINTS_FIRST_RELAX", HALF_KPOINTS_FIRST_RELAX) ediffg = user_incar_settings.get("EDIFFG", -0.05) wf = get_wf( structure, "optimize_only.yaml", vis=MVLScanRelaxSet( structure, user_incar_settings=user_incar_settings), common_params={ "vasp_cmd": vasp_cmd, "db_file": db_file }) wf = use_custodian( wf, custodian_params={ "ediffg": ediffg, "max_force_threshold": 0, "half_kpts_first_relax": half_kpts, "job_type": "metagga_opt_run", "db_file": db_file, "vasp_cmd": vasp_cmd }) wf = add_common_powerups(wf, c) if c.get("ADD_WF_METADATA", ADD_WF_METADATA): wf = add_wf_metadata(wf, structure) if c.get("REMOVE_WAVECAR", REMOVE_WAVECAR): wf = clean_up_files(wf) return wf
def test_custodian_powerups(self): my_wf = copy_wf(self.bs_wf) my_wf = remove_custodian(my_wf) for fw in my_wf.fws: task_idx = 1 if "structure optimization" in fw.name else 2 self.assertTrue("RunVaspDirect" in fw.tasks[task_idx]._fw_name) self.assertEqual(fw.tasks[task_idx]["vasp_cmd"], "test_VASP") my_wf_double_relax = remove_custodian(copy_wf(self.bs_wf)) my_wf_double_relax = use_custodian( my_wf_double_relax, fw_name_constraint="structure optimization", custodian_params={"job_type": "double_relaxation_run"}, ) for fw in my_wf_double_relax.fws: if "structure optimization" in fw.name: self.assertTrue("RunVaspCustodian" in fw.tasks[1]._fw_name) self.assertEqual(fw.tasks[1]["job_type"], "double_relaxation_run") else: self.assertTrue("RunVaspDirect" in fw.tasks[2]._fw_name) self.assertFalse("job_type" in fw.tasks[2])
def test_custodian_powerups(self): my_wf = self._copy_wf(self.bs_wf) my_wf = remove_custodian(my_wf) for fw in my_wf.fws: task_idx = 1 if "structure optimization" in fw.name else 2 self.assertTrue( "RunVaspDirect" in fw.to_dict()["spec"]["_tasks"][task_idx]["_fw_name"]) self.assertEqual( fw.to_dict()["spec"]["_tasks"][task_idx]["vasp_cmd"], "test_VASP") my_wf_double_relax = remove_custodian(self._copy_wf(self.bs_wf)) my_wf_double_relax = use_custodian(my_wf_double_relax, fw_name_constraint="structure optimization", custodian_params={"job_type": "double_relaxation_run"}) for fw in my_wf_double_relax.fws: if "structure optimization" in fw.name: self.assertTrue("RunVaspCustodian" in fw.to_dict()["spec"]["_tasks"][1]["_fw_name"]) self.assertEqual(fw.to_dict()["spec"]["_tasks"][1]["job_type"], "double_relaxation_run") else: self.assertTrue("RunVaspDirect" in fw.to_dict()["spec"]["_tasks"][2]["_fw_name"]) self.assertFalse("job_type" in fw.to_dict()["spec"]["_tasks"][2])
def _run_scan_relax(self, wf, formula): if not VASP_CMD: wf = use_fake_vasp(wf, { "PBEsol structure optimization": os.path.join(reference_dir, "PBESol_pre_opt_for_SCAN_{}".format(formula)), "R2SCAN structure optimization": os.path.join(reference_dir, "SCAN_structure_optimization_{}".format(formula)) }, check_kpoints=False, check_potcar=False, clear_inputs=False, check_incar=False) else: wf = use_custodian(wf) wf = use_potcar_spec(wf) fw_ids = self.lp.add_wf(wf) # run the workflow rapidfire(self.lp, fworker=_fworker) return fw_ids
def get_aneb_wf( structure, working_ion, insert_coords, insert_coords_combinations, n_images, vasp_input_set=None, override_default_vasp_params=None, handler_group=None, selective_dynamics_scheme="fix_two_atom", launch_mode="all", vasp_cmd=VASP_CMD, db_file=DB_FILE, wall_time=None, additional_fields=None, tags=None, powerup_dicts=None, name="ApproxNEB", ): """ Workflow for running the "ApproxNEB" algorithm to estimate energetic barriers for a working ion in a structure (host) between end point positions specified by insert_coords and insert_coords_combinations. Note this workflow is only intended for the dilute lattice limit (where one working ion is in a large supercell structure of the host and little volume change upon insertion is expected). By default workflow sets appropriate VASP input parameters and Custodian handler groups. This workflow uses an "approx_neb" collection to organize outputs and generate inputs for new VASP calculations for easier data management and analysis. An "approx_neb" additional field is automatically added to all task docs generated to assist record keeping. To make modifications to docs generated by this workflow, use of the additional_fields and tags arguments is recommended to ensure all fireworks, tasks collection docs, and approx_neb collection docs are modified. Args: structure (Structure): structure of empty host working_ion: specie of site to insert in structure (e.g. "Li"). insert_coords (1x3 array or list of 1x3 arrays): fractional coordinates of site(s) to insert in structure (e.g. [[0,0,0], [0,0.25,0], [0.5,0,0]]). insert_coords_combinations (list of strings): list of strings corresponding to the list index of insert_coords to specify which combination of end_points to use for path interpolation. (e.g. ["0+1", "0+2"]) n_images: n_images (int): number of images interpolated between end point structures for each path set by insert_coords_combinations vasp_input_set (VaspInputSet class): can use to define VASP input parameters. See pymatgen.io.vasp.sets module for more information. MPRelaxSet() and override_default_vasp_params are used if vasp_input_set = None. override_default_vasp_params (dict): if provided, vasp_input_set is disregarded and the Vasp Input Set is created by passing override_default_vasp_params to MPRelaxSet(). Allows for easy modification of MPRelaxSet(). For example, to set ISIF=2 in the INCAR use: {"user_incar_settings":{"ISIF":2}} handler_group (str or [ErrorHandler]): group of handlers to use for RunVaspCustodian firetask. See handler_groups dict in the code for the groups and complete list of handlers in each group. Alternatively, you can specify a list of ErrorHandler objects. selective_dynamics_scheme (str): "fix_two_atom" launch_mode (str): "all" or "screening" vasp_cmd (str): the name of the full executable for running VASP. db_file (str): path to file containing the database credentials. wall_time (int): Total walltime in seconds. If this is None and the job is running on a PBS system, the handler will attempt to determine the walltime from the PBS_WALLTIME environment variable. If the wall time cannot be determined or is not set, this handler will have no effect. additional_fields (dict): specifies more information to be stored in the approx_neb collection to assist user record keeping. tags (list): list of strings to be stored in the approx_neb collection under the "tags" field to assist user record keeping. powerup_dicts (list): additional powerups given to all the dynamically created image fireworks name (str): name for the workflow returned Returns: Workflow """ approx_neb_params = override_default_vasp_params or { "user_incar_settings": { "EDIFF": 0.0005, "EDIFFG": -0.05, "IBRION": 1, "ISIF": 3, "ISMEAR": 0, "LDAU": False, "NSW": 400, "ADDGRID": True, "ISYM": 1, "NELMIN": 4, } } handler_group = handler_group or [ VaspErrorHandler(), MeshSymmetryErrorHandler(), NonConvergingErrorHandler(), PotimErrorHandler(), PositiveEnergyErrorHandler(), FrozenJobErrorHandler(), StdErrHandler(), WalltimeHandler(wall_time=wall_time), ] wf_uuid = str(uuid4()) additional_fields = deepcopy(additional_fields) host_fw = HostFW( structure=structure, approx_neb_wf_uuid=wf_uuid, db_file=db_file, vasp_input_set=vasp_input_set, vasp_cmd=vasp_cmd, override_default_vasp_params=deepcopy(approx_neb_params), additional_fields=additional_fields, tags=tags, ) # modifies incar settings needed for end point and image structure relaxations if "user_incar_settings" not in approx_neb_params.keys(): approx_neb_params = {"user_incar_settings": {}} approx_neb_params["user_incar_settings"]["ISIF"] = 2 approx_neb_params["user_incar_settings"]["ISYM"] = 0 approx_neb_params["user_incar_settings"]["LDAU"] = False end_point_fws = [] for n, coord in enumerate(insert_coords): end_point_fws.append( EndPointFW( approx_neb_wf_uuid=wf_uuid, insert_specie=working_ion, insert_coords=coord, end_points_index=n, db_file=db_file, override_default_vasp_params=approx_neb_params, parents=host_fw, )) evaluate_path_fws = [] for end_points_combo in insert_coords_combinations: if isinstance(end_points_combo, (str)): combo = end_points_combo.split("+") if len(combo) == 2: c = [int(combo[0]), int(combo[-1])] else: raise ValueError( "string format in insert_coords_combinations is incorrect") evaluate_path_fws.append( EvaluatePathFW( approx_neb_wf_uuid=wf_uuid, end_points_combo=end_points_combo, mobile_specie=working_ion, n_images=n_images, selective_dynamics_scheme=selective_dynamics_scheme, launch_mode=launch_mode, vasp_cmd=vasp_cmd, db_file=db_file, override_default_vasp_params=approx_neb_params, handler_group=handler_group, parents=[end_point_fws[c[0]], end_point_fws[c[1]]], add_additional_fields=additional_fields, add_tags=tags, )) wf = Workflow([host_fw] + end_point_fws + evaluate_path_fws) wf = use_custodian(wf, custodian_params={"handler_group": handler_group}) if isinstance(tags, (list)): wf = add_tags(wf, tags) if isinstance(additional_fields, (dict)): wf = add_additional_fields_to_taskdocs(wf, update_dict=additional_fields) if powerup_dicts is not None: wf = powerup_by_kwargs(wf, powerup_dicts) for fw in wf.fws: fw.spec["vasp_powerups"] = powerup_dicts wf.metadata.update({"approx_neb_wf_uuid": wf_uuid}) wf.name = name return wf