示例#1
0
    def update_picker_dropdown(index):
        todaydate = datetime.now()
        index = index.split('-')[1]
        #options = am.DataHandler().IndexConstituentsDict()
        dh = MSDataManager()
        options = dh.IndexConstituentsDict(index)
        #options = {'AAPL': 'AAPL', 'MSFT': 'MSFT'}
        #dh = am.DataHandler()

        data = None
        # def Ret52wData(tick):
        #     return dh.ReturnData(
        #             tick,
        #             start_date=(todaydate - relativedelta(weeks=52)),
        #             end_date=todaydate,
        #             )
        # data = [{
        #         'id': tick,
        #         'Symbol': tick,
        #         'Name': tick,
        #         '52ws': round(MomentumIndicators(Ret52wData(tick)).calcSharpe(252), 2),
        #         '52wh': Ret52wData(tick)['Close'].max(),
        #         '52wl': Ret52wData(tick)['Close'].min()
        #         } for tick in dh.ReturnIndexConstituents(index)]
        return index, options, data
示例#2
0
def calcStrategy(start_date, end_date, index):
    full_market_returns = []
    full_returns_bh = []
    #dh = am.DataHandler(index)
    dh = MSDataManager()
    for ticker in dh.ReturnIndexConstituents(index):
        df1 = dh.ReturnData(ticker, start_date=start_date, end_date=end_date,)
        df, returnsStrat, returnsBH = MOM1(df1, start_date, end_date, 5)
        full_market_returns.append(returnsStrat*100)
        full_returns_bh.append(returnsBH*100)
    return [np.average(np.array(full_market_returns)),
            np.average(np.array(full_returns_bh))]
示例#3
0
def calcReturns(stockPicker, start_date, end_date, strategyToTest, index):
    dh = MSDataManager()
    df1 = dh.ReturnData(stockPicker, start_date=start_date, end_date=end_date)
    df, returnsStrat, returnsBH = globals()[strategyToTest](df1, start_date,
                                                            end_date, 5)
    tickerSymbol = []
    buyPrices = []
    buyDates = []
    buySignals = []
    sellPrices = []
    sellDates = []
    sellSignals = []
    returns = []
    for i in range(len(df)):
        sig1 = df['bsSig'].iat[i]
        val1 = df['Close'].iat[i]
        date1 = df.index[i]
        signal = str(int(df['SignalMACD'][i])) + str(int(
            df['SignalROC'][i])) + str(int(df['SignalSTOC'][i])) + str(
                int(df['SignalRSI'][i]))
        if sig1 == 1:
            tickerSymbol.append(stockPicker)
            priceBuy = val1
            buyPrices.append(val1)
            buyDates.append(date1)
            buySignals.append(signal)
        elif sig1 == -1:
            priceSell = val1
            sellPrices.append(val1)
            sellDates.append(date1)
            profit = (priceSell - priceBuy) / priceBuy
            sellSignals.append(signal)
            returns.append(round(profit * 100, 2))
    data = np.array([
        tickerSymbol, buyDates, buyPrices, buySignals, sellDates, sellPrices,
        sellSignals, returns
    ]).T.tolist()
    dff = pd.DataFrame(data=data,
                       columns=[
                           'Symbol', 'datebuy', 'pricebuy', 'buysignals',
                           'datesell', 'pricesell', 'sellsignals', 'perprofit'
                       ])
    return dff, returnsStrat, returnsBH
示例#4
0
def average_close(df, index, ticker, fig):
    #dh = am.DataHandler(index)
    dh = MSDataManager()
    data = None
    #data = dh.ReturnDataRT(ticker)
    #if not data.empty
    if data is not None:
        ftwh = data['52_week_high'].iloc[-1]
        ftwl = data['52_week_low'].iloc[-1]
        trace = go.Scatter(x = df.index, y = (np.zeros(len(df.index)) + ftwh), mode = 'lines', name = '52wh', showlegend = False, line = {'color': 'rgb(255, 255, 255)', 'width': 1, 'dash': 'dot'})
        fig.append_trace(trace, 1, 1)
        trace = go.Scatter(x = df.index, y = (np.zeros(len(df.index)) + df['Close'].mean()), mode = 'lines', name = 'Average', showlegend = False, line = {'color': 'rgb(255, 255, 255)', 'width': 1, 'dash': 'dot'})
        fig.append_trace(trace, 1, 1)
        trace = go.Scatter(x = df.index, y = (np.zeros(len(df.index)) + ftwl), mode = 'lines', name = '52wl', showlegend = False, line = {'color': 'rgb(255, 255, 255)', 'width': 1, 'dash': 'dot'})
        fig.append_trace(trace, 1, 1)
    return fig
示例#5
0
    def info_div_callback(ticker, n_intervals):
        ticker_sym = ticker.split('-')[0].strip()
        ticker_sec = ticker.split('-')[1].strip()
        dh = MSDataManager()
        mh = MarketHours('NYSE')
        mo_class = 'cgreen' if mh.MarketOpen else 'cred'
        mo_str = 'open' if mh.MarketOpen else 'closed'
        latest_trade_date = dh.ReturnLatestStoredDate(ticker_sym)
        latest_trade_date_str = latest_trade_date.strftime(
            '%d-%m-%Y - %H:%M:%S')
        data = dh.ReturnData(ticker_sym,
                             start_date=latest_trade_date -
                             relativedelta(years=1),
                             end_date=latest_trade_date,
                             limit=None)
        latest = data['Close'].iloc[-1]
        diff = (data['Close'][-2] - data['Close'][-1])
        pct_change = diff / data['Close'][-2]
        pl_class = 'cgreen' if diff > 0 else 'cred'
        pl_sign = '+' if diff > 0 else '-'
        # pct_change = f''
        ftwh = data['Close'].values.max()
        ftwl = data['Close'].values.min()
        #market_cap = data['market_cap'].iloc[-1]
        # market_cap = 0
        #curr = str(data['currency'].iloc[-1]).replace('EUR', '€')
        curr = 'USD'
        children = [
            dbc.Row([html.H6(f'{ticker_sec} ({ticker_sym})', className='')]),
            dbc.Row([
                dbc.Col(
                    [
                        html.P([
                            html.Span(
                                html.Strong(
                                    f'{curr} {latest:.2f} ',
                                    className=pl_class + ' large bold')),
                            html.Span(f'{pl_sign}{diff:.2f} ',
                                      className=pl_class + ' small'),
                            html.Span(f'({pl_sign}{pct_change:.2f}%)',
                                      className=pl_class + ' small'),
                        ], ),
                        html.P(
                            html.Span(
                                f'As of {latest_trade_date_str}. Market {mo_str}.',
                                className=' small'))
                    ],
                    md=12,
                ),
            ]),
        ]
        # dbc.Row(
        #     html.Div([
        #         dcc.RangeSlider(
        #                 disabled = True,
        #                 min=ftwl,
        #                 max=ftwh,
        #                 value=[ftwl, latest, ftwh],
        #                 # value=[1, 20, 40]
        #                 marks={
        #                     float(ftwl): {'label': f'{curr} {ftwl:.2f}', 'style': {'color': '#77b0b1'}},
        #                     float(latest): {'label': f'{curr} {latest:.2f}', 'style': {'color': '#77b0b1'}},
        #                     float(ftwh): {'label': f'{curr} {ftwh:.2f}', 'style': {'color': '#77b0b1'}}
        #                 }
        #             )
        #         ],
        #         style={'display': 'block', 'width': '60%', 'padding': ''},
        #         className='mt-1'
        #         )
        #         )

        # {latest_trade_date}
        # latest}+({pct_change:.2f})')
        return children
示例#6
0
def get_fig(ticker, type_trace, studies, start_date, end_date, index):

    #    for ticker in ticker_list:
    #dh = am.DataHandler(index)
    dh = MSDataManager()
    df = dh.ReturnData(ticker, start_date=start_date, end_date=end_date)

    selected_subplots_studies = []
    selected_first_row_studies = []
    row = 2  # number of subplots

    if studies != []:
        for study in studies:
            if study in subplot_traces:
                row += 1  # increment number of rows only if the study needs a subplot
                selected_subplots_studies.append(study)
            else:
                selected_first_row_studies.append(study)
    fig = tools.make_subplots(rows=row,
                              shared_xaxes=True,
                              shared_yaxes=False,
                              cols=1,
                              print_grid=True,
                              vertical_spacing=0.05,
                              row_width=[0.2] * (row - 1) +
                              [1 - (row - 1) * 0.2])

    fig.append_trace(globals()[type_trace](df), 1, 1)

    fig['layout'][f'xaxis{row}'].update(tickangle=-0,
                                        tickformat='%Y-%m-%d',
                                        autorange=True,
                                        showgrid=True,
                                        mirror='ticks',
                                        color='rgba(255, 255, 255, 1)',
                                        tickcolor='rgba(255,255,255,1)')
    fig['layout']['yaxis1'].update(
        range=[df['Close'].min() / 1.3, df['Close'].max() * 1.05],
        showgrid=True,
        anchor='x1',
        mirror='ticks',
        layer='above traces',
        color='rgba(255, 255, 255, 1)',
        gridcolor='rgba(255, 255, 255, 1)')
    fig['layout']['yaxis2'].update(
        # range= [0, df['Volume'].max()*4],
        # overlaying = 'y2',
        # layer = 'below traces',
        autorange=True,
        # anchor = 'x1',
        side='left',
        showgrid=True,
        title='D. Trad. Vol.',
        color='rgba(255, 255, 255, 1)',
    )

    # if model != '' and model is not None:
    #     # bsSig, retStrat, retBH = globals()[strategyTest](df, start_date, end_date, 5)
    #     ml = load(model)
    #     fig = bsMarkers(df, fig)
    #     fig['layout'].update(annotations=[
    #             dict(
    #                 x = df.index[int(round(len(df.index)/2, 0))],
    #                 y = df['Close'].max()*1.02,
    #                 text = 'Your Strategy: ' + str(round(retStrat*100, 0)) + ' % \nBuy&Hold: ' + str(round(retBH*100, 0)) + '%',
    #                 align = 'center',
    #                 font = dict(
    #                         size = 16,
    #                         color = 'rgb(255, 255, 255)'),

    #                 showarrow = False,

    #             )
    #             ]
    #     )

    for study in selected_first_row_studies:
        fig = globals()[study](df, fig)  # add trace(s) on fig's first row

    row = 2
    fig = vol_traded(df, fig, row)
    for study in selected_subplots_studies:
        row += 1
        fig = globals()[study](df, fig, row)  # plot trace on new row

    fig['layout'].update(chart_layout)
    fig['layout']['xaxis'].update(rangeselector=dict(buttons=list([
        dict(count=1, label='1M', step='month', stepmode='backward'),
        dict(count=6, label='6M', step='month', stepmode='backward'),
        dict(count=1, label='YTD', step='year', stepmode='todate'),
        dict(count=1, label='1Y', step='year', stepmode='backward'),
        dict(count=3, label='3Y', step='year', stepmode='backward'),
        dict(step='all', label='MAX')
    ])),
                                  rangeslider=dict(visible=False),
                                  type="date")

    return fig
示例#7
0
import colorlover as cl
colorscale = cl.scales['12']['qual']['Paired']

cgreen = 'rgb(12, 205, 24)'
cred = 'rgb(205, 12, 24)'

# Set number of allowed charts
num_charts = 4

server = app.server

#conf = am.Config()

#dh = am.DataHandler('DAX')
dh = MSDataManager()
options = dh.IndexConstituentsDict('SPY')
spy_info = pd.read_csv('./data/spy.csv')
# options = [{'label': 'AAPL', 'value': 'AAPL'}, {'label': 'MSFT', 'value': 'TT'}]
indicators = [
    {
        'label': '10 day exponetial moving average',
        'value': 'EMA10',
        'subplot': False
    },
    {
        'label': '30 day exponetial moving average',
        'value': 'EMA30',
        'subplot': False
    },
    {
示例#8
0
 def info_div_callback(ticker, n_intervals, index, timeRange):
     #dh = am.DataHandler(index)
     dh = MSDataManager()
     #print(index)
     mh = MarketHours('NYSE')
     data = None
     #data = dh.ReturnDataRT(ticker)
     #children = ''
     #if not data.empty
     data = dh.ReturnData(ticker, limit=2)
     #if data is not None:
     latest = data['Close'].iloc[-1]
     latest_trade_date = dh.ReturnLatestStoredDate(ticker).strftime(
         '%Y:%M:%d - %H:%M:%S')
     diff = data['Close'].diff()[-1]
     pct_change = data['Close'].pct_change()[-1]
     ftwh = data['Close'].values.max()
     ftwl = data['Close'].values.min()
     #market_cap = data['market_cap'].iloc[-1]
     market_cap = 0
     #curr = str(data['currency'].iloc[-1]).replace('EUR', '€')
     curr = 'USD'
     children = [
         html.Div([
             html.Table(
                 [
                     # html.Tr([
                     #         html.Td(html.H2(ticker)),
                     #         html.Td(),
                     #         html.Td(),
                     #         html.Td('Market cap:'),
                     #         html.Td(f'{curr} {market_cap:.2f}')
                     #         ]),
                     # html.Tr([
                     #         html.Td([
                     #             html.Span(f'{curr}{latest:.2f}'),
                     #             html.Span(f'{diff:.2f} + ({pct_change:.2f})')
                     #             ], className = 'small'),
                     #         html.Td(),
                     #         html.Td(),
                     #         html.Td(html.Span('Market open', style={'color': 'green'}) if mh.MarketOpen() else html.Span('Market closed', style={'color': 'red'})),
                     #         html.Td()
                     #         ]),
                     # html.Tr([
                     #         html.Td([html.Span(str(latest_trade_date))]),
                     #         html.Td(),
                     #         html.Td(),
                     #         html.Td(),
                     #         html.Td()
                     #         ]),
                 ],
                 className='small'),
         ]),
         # html.Div([
         #         dcc.RangeSlider(
         #                 disabled = True,
         #                 min=ftwl,
         #                 max=ftwh,
         #                 value=[ftwl, latest, ftwh],
         #                 marks={
         #                     ftwl: {'label': curr + str(ftwl), 'style': {'color': '#77b0b1'}},
         #                     latest: {'label': curr + str(latest), 'style': {'color': '#77b0b1'}},
         #                     ftwh: {'label': curr + str(ftwh), 'style': {'color': '#77b0b1'}}
         #                 }
         #             )
         #         ], style={'display': 'block', 'width': '60%', 'padding': '8px 40px'})
     ]
     # children = html.H1(ticker)
     return children
示例#9
0
def get_fig(ticker, type_trace, studies, strategyTest, start_date, end_date,
            index):

    #    for ticker in ticker_list:
    #dh = am.DataHandler(index)
    dh = MSDataManager()
    df = dh.ReturnData(ticker, start_date=start_date, end_date=end_date)

    subplot_traces = [  # first row traces
        'RSI', 'ROC', 'MACD', 'STOC', 'D_RETURNS', 'ATR', 'ADX', 'WR'
    ]
    selected_subplots_studies = []
    selected_first_row_studies = []
    row = 2  # number of subplots

    if studies != []:
        for study in studies:
            if study in subplot_traces:
                row += 1  # increment number of rows only if the study needs a subplot
                selected_subplots_studies.append(study)
            else:
                selected_first_row_studies.append(study)
    fig = tools.make_subplots(rows=row,
                              shared_xaxes=True,
                              shared_yaxes=False,
                              cols=1,
                              print_grid=True,
                              vertical_spacing=0.05,
                              row_width=[0.2] * (row - 1) +
                              [1 - (row - 1) * 0.2])

    fig.append_trace(globals()[type_trace](df), 1, 1)
    fig = average_close(df, index, ticker, fig)

    fig['layout'][f'xaxis{row}'].update(tickangle=-0,
                                        tickformat='%Y-%m-%d',
                                        autorange=True,
                                        showgrid=True,
                                        mirror='ticks',
                                        color='rgba(255, 255, 255, 1)',
                                        tickcolor='rgba(255,255,255,1)')
    fig['layout']['yaxis1'].update(
        range=[df['Close'].min() / 1.3, df['Close'].max() * 1.05],
        showgrid=True,
        anchor='x1',
        mirror='ticks',
        layer='above traces',
        color='rgba(255, 255, 255, 1)',
        gridcolor='rgba(255, 255, 255, 1)')
    fig['layout']['yaxis2'].update(
        #                          range= [0, df['Volume'].max()*4],
        #                          overlaying = 'y2',
        #                          layer = 'below traces',
        autorange=True,
        #                        anchor = 'x1',
        side='left',
        showgrid=True,
        title='D. Trad. Vol.',
        color='rgba(255, 255, 255, 1)',
    )

    if strategyTest != '' and strategyTest is not None:
        bsSig, retStrat, retBH = globals()[strategyTest](df, start_date,
                                                         end_date, 5)
        fig = bsMarkers(df, fig)
        fig['layout'].update(annotations=[
            dict(
                x=df.index[int(round(len(df.index) / 2, 0))],
                y=df['Close'].max() * 1.02,
                text='Your Strategy: ' + str(round(retStrat * 100, 0)) +
                ' % \nBuy&Hold: ' + str(round(retBH * 100, 0)) + '%',
                align='center',
                font=dict(size=16, color='rgb(255, 255, 255)'),
                showarrow=False,
            )
        ])

    for study in selected_first_row_studies:
        fig = globals()[study](df, fig)  # add trace(s) on fig's first row

    row = 2
    fig = vol_traded(df, fig, row)
    for study in selected_subplots_studies:
        row += 1
        fig = globals()[study](df, fig, row)  # plot trace on new row

    fig['layout']['margin'] = {'b': 30, 'r': 60, 'l': 40, 't': 10}
    fig['layout'].update(
        autosize=True,
        uirevision='The User is always right',
        height=600,
        # paper_bgcolor = '#000000',
        paper_bgcolor='#222',

        # paper_bgcolor = 'rgb(64, 68, 72)',
        # paper_bgcolor = 'rgb(219, 240, 238)',

        # plot_bgcolor = '#000000',
        plot_bgcolor='#222',

        # plot_bgcolor = 'rgb(64, 68, 72)',
        # plot_bgcolor = 'rgb(219, 240, 238)',
        hovermode='x',
        spikedistance=-1,
        xaxis={
            'gridcolor': 'rgba(255, 255, 255, 0.5)',
            'gridwidth': .5,
            'showspikes': True,
            'spikemode': 'across',
            'spikesnap': 'data',
            'spikecolor': 'rgb(220, 200, 220)',
            'spikethickness': 1,
            'spikedash': 'dot'
        },
        yaxis={
            'gridcolor': 'rgba(255, 255, 255, 0.5)',
            'gridwidth': .5
        },
        legend=dict(x=1.05, y=1))

    fig['layout']['xaxis'].update(rangeselector=dict(buttons=list([
        dict(count=1, label='1M', step='month', stepmode='backward'),
        dict(count=6, label='6M', step='month', stepmode='backward'),
        dict(count=1, label='YTD', step='year', stepmode='todate'),
        dict(count=1, label='1Y', step='year', stepmode='backward'),
        dict(count=3, label='3Y', step='year', stepmode='backward'),
        dict(step='all', label='MAX')
    ])),
                                  rangeslider=dict(visible=False),
                                  type="date")

    return fig