Delete series for all metrics for the specified entity with names starting with the specified prefix. ''' # Connect to ATSD server # connection = connect('/path/to/connection.properties') connection = connect_url('https://atsd_hostname:8443', 'username', 'password') # Set query entity = "entity" metric_expr = "name LIKE 'me*'" # Initialize services entities_service = EntitiesService(connection) series_service = SeriesService(connection) # Query all metrics for entity metrics = entities_service.metrics(entity=entity, expression=metric_expr) if not metrics: print("No metrics are found for entity " + entity) else: # Delete series for each metric for metric in metrics: query = SeriesDeleteQuery(entity=entity, metric=metric.name, exact_match=False) print("deleting ", entity, metric.name) # Uncomment next line to delete series # response = series_service.delete(query) # print(response)
from prettytable import PrettyTable from atsd_client import connect, connect_url from atsd_client.services import MetricsService, EntitiesService # Connect to ATSD server #connection = connect('/path/to/connection.properties') connection = connect_url('https://atsd_hostname:8443', 'username', 'password') entity = 'my-entity' entities_service = EntitiesService(connection) metrics_service = MetricsService(connection) # query all metrics for entity metrics = entities_service.metrics(entity, tags='frequency,seasonal_adjustment,observation_start,observation_end,category,parent_category', limit=5) t = PrettyTable(['Top Category', 'Category', 'Name', 'Label', 'Frequency', 'Adjustment', 'Observation Start', 'Observation End']) # iterate over metrics and add their fields/tags as rows into a PrettyTable for metric in metrics: t.add_row([metric.tags['category'], metric.tags['parent_category'], metric.name, metric.label, metric.tags['frequency'], metric.tags['seasonal_adjustment'], metric.tags['observation_start'], metric.tags['observation_end']]) # Sort metrics by name t.sortby = "Name" # Print metrics as ASCII table #print(t) # Print metrics as HTML table with header print(t.get_html_string(title="Available Metrics"))
# Connect to an ATSD server connection = connect_url('https://atsd_hostname:8443', 'user', 'password') # set grace interval in hours grace_interval_hours = 1 entities_service = EntitiesService(connection) metrics_service = MetricsService(connection) # query all entities that have last_insert_date, i.e. series entities = entities_service.list(expression="name LIKE '06*'", min_insert_date="1970-01-01T00:00:00.000Z") print('metric,entity,tags,last_insert_date') for entity in entities: # query all metrics for each entity metrics = entities_service.metrics(entity.name) for m in metrics: # query series list for each metric and entity series_list = metrics_service.series(m.name, entity.name) # for each list with more than 1 series if len(series_list) > 1: # calculate maximum of all last_insert_date's in list and subtract 1 hour # it will be lower limit date to compare lower_limit_date = max(s.last_insert_date for s in series_list) - timedelta( seconds=grace_interval_hours * 3600) for s in series_list: # check actual data existence if s.last_insert_date < lower_limit_date: print("%s,%s,%s,%s" % (s.metric, s.entity, s.tags, s.last_insert_date))
''' Locate series that have no data during the interval for one day before entity last_insert_date. ''' # Connect to ATSD server #connection = connect('/path/to/connection.properties') connection = connect_url('https://atsd_hostname:8443', 'username', 'password') # set grace interval in hours grace_interval_hours = 1 # list of the agents (entities) agents = ['nurswgvml007', 'nurswgvml010'] entities_service = EntitiesService(connection) metrics_service = MetricsService(connection) for agent in agents: # query agent meta information entity = entities_service.get(agent) if entity is None: print('Agent %s not found' % agent) continue date = entity.last_insert_date # query all metrics collecting by agent metrics = entities_service.metrics(entity, use_entity_insert_time=True) for metric in metrics: # check actual data existence if date - metric.last_insert_date > timedelta(seconds=grace_interval_hours * 3600): print("%s, %s" % (metric.name, agent))
title = '\nentity: %s, last hours: %s, minimal score: %s, aggregate period: %s min, interpolate period: %s min, ' \ 'data interval: %s days' % ( args.entity, args.last_hours, args.min_score, args.aggregate_period, args.interpolate_period, args.data_interval) if args.metric_filter is None: metric_expression = None else: metric_expression = "name like '%s'" % args.metric_filter title = '%s, metric filter: %s' % (title, args.metric_filter) message = [title] now = datetime.now() metrics = entities_service.metrics(args.entity, expression=metric_expression, min_insert_date=now - timedelta(seconds=args.last_hours * 3600), use_entity_insert_time=True) log('Processing: ') for metric in metrics: sf = SeriesFilter(metric=metric.name) ef = EntityFilter(entity=args.entity) df = DateFilter(start_date=datetime(now.year, now.month, now.day) - timedelta(days=args.data_interval), end_date='now') tf = TransformationFilter() query = SeriesQuery(series_filter=sf, entity_filter=ef, date_filter=df) if args.aggregate_period > 0: tf.set_aggregate( Aggregate(period={'count': args.aggregate_period, 'unit': TimeUnit.MINUTE}, types=[AggregateType.MEDIAN])) if args.interpolate_period > 0:
''' Delete series for all metrics for the specified entity with names starting with the specified prefix. ''' # Connect to ATSD server # connection = connect('/path/to/connection.properties') connection = connect_url('https://atsd_hostname:8443', 'username', 'password') # Set query entity = "entity" metric_expr = "name LIKE 'me*'" # Initialize services entities_service = EntitiesService(connection) series_service = SeriesService(connection) # Query all metrics for entity metrics = entities_service.metrics(entity=entity, expression=metric_expr) if not metrics: print("No metrics are found for entity " + entity) else: # Delete series for each metric for metric in metrics: query = SeriesDeleteQuery(entity=entity, metric=metric.name, exact_match=False) print("deleting ", entity, metric.name) # Uncomment next line to delete series # response = series_service.delete(query) # print(response)
''' Locate series that have no data during the actual time interval (grace_interval) using an expression filter for entity. ''' # Connect to ATSD server #connection = connect('/path/to/connection.properties') connection = connect_url('https://atsd_hostname:8443', 'username', 'password') # set grace_interval to one day grace_interval_minutes = 24 * 60 # query entities with last_insert_date min_insert_date = "1970-01-01T00:00:00.000Z" # calculate the upper boundary for the allowed last_insert_date values excluding grace_interval max_insert_date = datetime.now() - timedelta(seconds=grace_interval_minutes * 60) entities_service = EntitiesService(connection) metrics_service = MetricsService(connection) # query entities that have name started with 06 entities = entities_service.list(expression="name LIKE '06*'") print('metric, entity, tags, last_insert_date') for entity in entities: # query all metrics for each entity metrics = entities_service.metrics(entity) for metric in metrics: # query all series for each metric and entity series = metrics_service.series(metric, entity, min_insert_date=min_insert_date, max_insert_date=max_insert_date) for s in series: print("%s,%s,%s,%s" % (s.metric, s.entity, print_tags(s.tags), s.last_insert_date))