示例#1
0
def _lookup_extrema(sensor_series):
    """
    Returns min/max timestamps and min/max temperature for the given
    temperature series.
    """
    tmin, tmax = None, None
    smin, smax = None, None
    for sname in sensor_series:
        # Iterate all (potential) sub-series of each sensor:
        for idx in range(len(sensor_series[sname].sec)):
            # Update min/max timestamp (number of seconds since dt_from)
            csmin = min(sensor_series[sname].sec[idx])
            csmax = max(sensor_series[sname].sec[idx])
            if smin is None or csmin < smin:
                smin = csmin
            if smax is None or csmax > smax:
                smax = csmax
            # Update min/max temperature
            ctmin = min(sensor_series[sname].val[idx])
            ctmax = max(sensor_series[sname].val[idx])
            if tmin is None or ctmin < tmin:
                tmin = ctmin
            if tmax is None or ctmax > tmax:
                tmax = ctmax
    return AttributeDict({
        'sec': AttributeDict({
            'min': smin,
            'max': smax
        }),
        'val': AttributeDict({
            'min': tmin,
            'max': tmax
        })
    })
示例#2
0
 def __init__(self):
     self.paths = AttributeDict({})
     self.debug = AttributeDict({})
     self.parameters = AttributeDict({})
     for group in _CONFIG_PROPS:
         for value in _CONFIG_PROPS[group]:
             self[group.lower()][value] = get_property(f"{group}.{value}")
示例#3
0
 def get_inlet_control_options(self, as_int=True):
     """
     Returns the subset of "CMI buttons" which we support to "click"
     programmatically. As there is no actual API, but only a simplistic
     web interface, we have to replay an HTTP request which simulates
     a button click in order to adjust the inlet temperature.
     """
     return [
         AttributeDict({'label': '55\u200a°', 'value': DistrictHeatingRequest.MEDIUM}),
         AttributeDict({'label': '60\u200a°', 'value': DistrictHeatingRequest.HIGH}),
         AttributeDict({'label': '65\u200a°', 'value': DistrictHeatingRequest.VERY_HIGH})
     ]
示例#4
0
def _ssd_evaluate_prepare_paths(args: argparse.Namespace,
                                conf_obj: conf.Config) -> AttributeDict:
    import os

    output_path = f"{conf_obj.paths.output}/{args.network}/test/{args.iteration}"
    evaluation_path = f"{conf_obj.paths.evaluation}/{args.network}"
    result_file = f"{evaluation_path}/results-{args.iteration}"
    label_file = f"{output_path}/labels.bin"
    filenames_file = f"{output_path}/filenames.bin"
    predictions_file = f"{output_path}/predictions"
    predictions_per_class_file = f"{output_path}/predictions_class"
    predictions_glob_string = f"{output_path}/*ssd_predictions_transformed*"
    label_glob_string = f"{output_path}/*ssd_label*"

    os.makedirs(evaluation_path, exist_ok=True)

    return AttributeDict({
        "output_path": output_path,
        "evaluation_path": evaluation_path,
        "result_file": result_file,
        "label_file": label_file,
        "filenames_file": filenames_file,
        "predictions_file": predictions_file,
        "predictions_per_class_file": predictions_per_class_file,
        "predictions_glob_string": predictions_glob_string,
        "label_glob_string": label_glob_string
    })
示例#5
0
def test_cest_switch():
    # Test summertime switch
    cfg = AttributeDict({'type': 'dummy_task', 'interval': 1, 'unit': 'hours'})
    # CET --> CEST
    dt = datetime.datetime(year=2021,
                           month=3,
                           day=28,
                           hour=1,
                           minute=55,
                           second=3,
                           tzinfo=tz.tzlocal())
    with freeze_time(dt) as frozen_datetime:
        job = NonHeatingJob.from_attrdict(cfg)
        assert job.next_run == (dt + datetime.timedelta(hours=2))

    # CEST --> CET
    dt = datetime.datetime(year=2020,
                           month=10,
                           day=25,
                           hour=3,
                           minute=55,
                           second=3,
                           tzinfo=tz.tzlocal())
    with freeze_time(dt) as frozen_datetime:
        job = NonHeatingJob.from_attrdict(cfg)
        assert job.next_run == datetime.datetime(year=2020,
                                                 month=10,
                                                 day=25,
                                                 hour=4,
                                                 minute=55,
                                                 second=3,
                                                 tzinfo=tz.tzlocal())
示例#6
0
def make_response(success, **kwargs):
    """
    Most API hooks will return a JSON response, containing a boolean
    success flag and arbitrary payload (e.g. a message, data/image in case of
    querying the temperature plot, etc.)
    """
    return AttributeDict({'success': success, **kwargs})
示例#7
0
def _ssd_train_get_generators(
        args: argparse.Namespace, conf_obj: conf.Config, load_data: callable,
        gt: AttributeDict,
        predictor_sizes: Sequence[Sequence[int]]) -> AttributeDict:
    nr_trajectories = conf_obj.parameters.nr_trajectories if conf_obj.parameters.nr_trajectories != -1 else None

    train_generator, train_length, train_debug_generator = \
        load_data(gt.file_names_train, gt.instances_train, conf_obj.paths.coco,
                  predictor_sizes=predictor_sizes,
                  batch_size=conf_obj.parameters.batch_size,
                  image_size=conf_obj.parameters.ssd_image_size,
                  training=True, evaluation=False, augment=False,
                  debug=args.debug,
                  nr_trajectories=nr_trajectories)

    val_generator, val_length, val_debug_generator = \
        load_data(gt.file_names_val, gt.instances_val, conf_obj.paths.coco,
                  predictor_sizes=predictor_sizes,
                  batch_size=conf_obj.parameters.batch_size,
                  image_size=conf_obj.parameters.ssd_image_size,
                  training=False, evaluation=False, augment=False,
                  debug=args.debug,
                  nr_trajectories=nr_trajectories)

    return AttributeDict({
        "train_generator": train_generator,
        "train_length": train_length,
        "train_debug_generator": train_debug_generator,
        "val_generator": val_generator,
        "val_length": val_length,
        "val_debug_generator": val_debug_generator
    })
示例#8
0
    def reload_config(self):
        cfg = config.load_configuration(config.HELHEIMR_CONFIG_FILE_CONTROL)
        self._cfg = cfg.raspbee

        self._thermometer_config = dict()
        for config_label in self._cfg.thermometers.deconz_names:
            deconz_name = self._cfg.thermometers.deconz_names[config_label]
            alias = self._cfg.thermometers.aliases[config_label]
            abbrev = self._cfg.thermometers.abbreviations[config_label]
            self._thermometer_config[deconz_name] = AttributeDict({
                'config_label':
                config_label,
                'deconz_name':
                deconz_name,
                'alias':
                alias,
                'abbreviation':
                abbrev
            })
        self._thermometer_deconz_mapping = dict()
        thread = threading.Thread(
            target=lambda: self._make_thermometer_name2id_mapping())
        thread.daemon = True
        thread.start()
        return common.make_response(
            True,
            message=
            _('Reloaded thermometer configuration. Remapping ZigBee sensors in the background (this can take up to %(sec)d seconds).',
              sec=self._cfg.sensor_mapping.max_retries *
              self._cfg.sensor_mapping.sleep_between_retries))
示例#9
0
    def detect_files(config_path):
        config_files = []

        for config_file_name in listdir(config_path):
            config_file_path = path.join(config_path, config_file_name)
            config_file_name_parts = dict(
                enumerate(config_file_name.split('.')))
            config_file_basename = config_file_name_parts.get(0, None)
            config_file_extension = config_file_name_parts.get(1, None)

            is_valid_config_file_extension = (
                config_file_extension
                in DEFAULT_CONFIG_FORMAT_EXTENSIONS.keys())

            if is_valid_config_file_extension:
                config_files.append(
                    AttributeDict({
                        'basename':
                        config_file_basename,
                        'path':
                        config_file_path,
                        'name':
                        config_file_name,
                        'extension':
                        config_file_extension,
                        'format':
                        DEFAULT_CONFIG_FORMAT_EXTENSIONS.get(
                            config_file_extension, None)
                    }))

        return config_files
示例#10
0
def system_status():
    """Returns the current operating system/PC status."""
    return AttributeDict({
        'cpu': cpu_info(),
        'process': proc_info(),
        'uptime': uptime(),
        'storage': disk_info(),
        'database_size': filesize_str(config.database_size())
    })
示例#11
0
    def get(self, key=None, default=None):
        if key is None:
            result = self.__dict__
        else:
            result = self.__dict__.get(key, default)

        result = AttributeDict.dict(result)

        return result
示例#12
0
def _extract_heating_series(log_entries, dt_from, dt_to):
    # Handle the special case where we don't have log entries for the requested
    # duration:
    offset_to = _naive_time_offset(dt_to, dt_from)
    if len(log_entries) == 0:
        return dict()
    elif len(log_entries) == 1 and _naive_time_offset(log_entries[0].timestamp,
                                                      dt_from) < 0:
        tca = log_entries[0].task_curr_active
        series = AttributeDict({'sec': [0, offset_to], 'val': [tca, tca]})
    else:
        # Double list comprehension to get the step curve (i.e. add two datapoints
        # for each log entry)
        def _pa(e):
            # Returns the entry's 'previously active' flag
            return e.task_prev_active

        def _ca(e):
            # Returns the entry's 'currently active' flag
            return e.task_curr_active

        def _o(e):
            # Returns the (timezone-agnostic) time difference (offset)
            return _naive_time_offset(e.timestamp, dt_from)

        seconds = [f(e) for e in log_entries for f in (_o, _o)]
        values = [f(e) for e in log_entries for f in (_pa, _ca)]
        # As we log only heating state changes, we must prepend (and append)
        # a datapoint at the beginning (end) of the plotted period
        if seconds[0] > 0:
            seconds = [0, *seconds]
            values = [values[0], *values]

        if values[-1] < offset_to:
            seconds = [*seconds, offset_to]
            values = [*values, values[-1]]
        # series = AttributeDict({
        #     'sec': [f(e) for e in log_entries for f in (_o, _o)],
        #     'val': [f(e) for e in log_entries for f in (_pa, _ca)]
        # })
        series = AttributeDict({'sec': seconds, 'val': values})
    return series
示例#13
0
def convertLog(log):
    log = AttributeDict(log)
    log.blockHash = HexBytes(int(log.blockHash, 16))
    log.transactionHash = HexBytes(int(log.transactionHash, 16))
    encodedTopics = []
    for topic in log.topics:
        encodedTopics.append(HexBytes(int(topic, 16)))

    log.topics = encodedTopics
    log.blockNumber = int(log.blockNumber,16)
    log.logIndex = int(log.logIndex,16)
    log.transactionIndex = int(log.transactionIndex,16)
    return log
示例#14
0
def _ssd_test_load_gt(conf_obj: conf.Config) -> AttributeDict:
    import pickle

    with open(f"{conf_obj.paths.scenenet_gt_test}/photo_paths.bin",
              "rb") as file:
        file_names = pickle.load(file)
    with open(f"{conf_obj.paths.scenenet_gt_test}/instances.bin",
              "rb") as file:
        instances = pickle.load(file)

    return AttributeDict({"file_names": file_names, "instances": instances})
示例#15
0
def cast_dicts(value):
    if isinstance(value, tuple):
        return tuple(cast_dicts(list(value)))

    elif isinstance(value, list):
        return list(map(cast_dicts, value))

    elif isinstance(value, dict):
        return dict(AttributeDict.dict(value))

    return value
示例#16
0
 def job_list(self, language, use_code_tags=False):
     heating_jobs = [
         j.summary(language, use_code_tags) for j in self.jobs
         if isinstance(j, PeriodicHeatingJob)
     ]
     non_heating_jobs = [
         j.summary(language, use_code_tags) for j in self.jobs
         if isinstance(j, NonHeatingJob)
     ]
     return AttributeDict({
         'heating_jobs': heating_jobs,
         'non_heating_jobs': non_heating_jobs
     })
示例#17
0
def _ssd_train_prepare_paths(args: argparse.Namespace,
                             conf_obj: conf.Config) -> AttributeDict:
    import os

    summary_path = f"{conf_obj.paths.summary}/{args.network}/train/{args.iteration}"
    pre_trained_weights_file = f"{conf_obj.paths.weights}/{args.network}/VGG_coco_SSD_300x300_iter_400000.h5"
    weights_path = f"{conf_obj.paths.weights}/{args.network}/train/"

    os.makedirs(summary_path, exist_ok=True)
    os.makedirs(weights_path, exist_ok=True)

    return AttributeDict({
        "summary_path": summary_path,
        "weights_path": weights_path,
        "pre_trained_weights_file": pre_trained_weights_file
    })
示例#18
0
 def summary(self, language=None, use_code_tags=False):
     return AttributeDict({
         'unique_id':
         self.unique_id,
         'created_by':
         self.created_by,
         'interval_string':
         self._intervalstr(language),
         'at_string':
         self._atstr(language, use_code_tags),
         'heating_string':
         self._heatingstr(language, use_code_tags),
         'next_run':
         time_utils.format(time_utils.dt_as_local(self.next_run),
                           fmt='%Y-%m-%d %H:%M:%S')
     })
示例#19
0
 def summary(self, language=None, use_code_tags=False):
     dt_fmt = '{:s}%Y-%m-%d %H:%M:%S{:s}'.format(
         '<code>' if use_code_tags else '',
         '</code>' if use_code_tags else '')
     return AttributeDict({
         'unique_id':
         self.unique_id,
         'description':
         self.job_description,
         'interval_string':
         self._intervalstr(language),
         'at_string':
         self._atstr(use_code_tags=use_code_tags),
         'next_run':
         time_utils.format(time_utils.dt_as_local(self.next_run),
                           fmt=dt_fmt)
     })
示例#20
0
def _ssd_test_prepare_paths(args: argparse.Namespace,
                            conf_obj: conf.Config) -> AttributeDict:
    import os

    output_path = f"{conf_obj.paths.output}/{args.network}/test/{args.iteration}/"
    checkpoint_path = f"{conf_obj.paths.weights}/{args.network}/train/{args.train_iteration}"
    if conf_obj.parameters.ssd_test_pretrained:
        weights_file = f"{conf_obj.paths.weights}/ssd/VGG_coco_SSD_300x300_iter_400000_subsampled.h5"
    else:
        weights_file = f"{checkpoint_path}/ssd300_weights.h5"

    os.makedirs(output_path, exist_ok=True)

    return AttributeDict({
        "output_path": output_path,
        "weights_file": weights_file
    })
示例#21
0
 def _cvt(bc):
     return AttributeDict({
         'id':
         bc[0],
         'timestamp':
         time_utils.dt_as_local(
             time_utils.dt_fromstr(bc[1], fmt="%Y-%m-%d %H:%M:%S")),
         'msg_type':
         bc[2],
         'receiver':
         bc[3],
         'message':
         bc[4],
         'source':
         bc[5],
         'extra':
         bc[6]
     })
示例#22
0
    def req_scheduler_add():
        _logger.info('Serving NON-HEATING job ADD')
        if flask.request.method == 'POST':
            # POSTs from the _form_add_non_heating_job will post
            # empty strings for 'at' and 'description', thus replace
            # those by actual None
            at = flask.request.values.get('at', type=str, default=None)
            if at is not None and len(at.strip()) == 0:
                at = None

            description = flask.request.values.get('description', type=str, default=None)
            if description is not None and len(description.strip()) == 0:
                description = None

            start_day = flask.request.values.get('start_day', type=str, default=None)
            if start_day is not None and len(start_day.strip()) == 0:
                start_day = None

            cfg = AttributeDict({
                'type': flask.request.values.get('type', type=str),
                'description': description,
                'interval': flask.request.values.get('interval', type=int, default=1),
                'unit': flask.request.values.get('unit', type=str, default=None),
                'start_day': start_day,
                'at': at
            })

            try:
                job = scheduling.NonHeatingJob.from_attrdict(cfg)
                rsp = scheduling.scheduler.schedule_job(job, get_locale())
            except scheduling.ScheduleError as e:
                return _return_response(common.make_response(False, message=_('Exception:') + f' {e}'))

            if not rsp.success:
                return _return_response(rsp)

            if scheduling.scheduler.serialize_jobs():
                return _return_response(common.make_response(True,
                                                             message=_('Permanently added new non-heating job.')))
            else:
                return _return_response(common.make_response(False,
                                                             message=_('Added new non-heating job temporarily, because the schedule could not be saved to disk.')))
        else:
            return flask.redirect(svc_urls.scheduler_ctrl)
示例#23
0
def _extract_temperature_series(log_entries, dt_from):
    series = {
        sname: AttributeDict({
            'sec': list(),
            'val': list(),
            'alias': None,
            'abbreviation': None
        })
        for sname in set(
            [k for entry in log_entries for k in entry if k != 'timestamp'])
    }
    # First, collect all readings for each sensor:
    for entry in log_entries:
        sec_offset = _naive_time_offset(entry['timestamp'], dt_from)
        for sname in entry:
            if sname == 'timestamp':
                continue
            series[sname]['alias'] = entry[sname].alias
            series[sname]['abbreviation'] = entry[sname].abbreviation
            series[sname]['sec'].append(sec_offset)
            series[sname]['val'].append(entry[sname].temperature)
    # Now split each sensor's readings into multiple curves if they are
    # temporally disrupted:
    for sname in series:
        split_indices = [0]
        num_readings = len(series[sname].sec)
        for idx in range(1, num_readings):
            delta_sec = series[sname].sec[idx] - series[sname].sec[idx - 1]
            if delta_sec >= 1800:
                # If the sensor readings are more than (or eq. to) 30 mins
                # apart, start a new curve
                split_indices.append(idx)
        split_indices.append(num_readings)
        # Split the readings into the separate curves:
        series[sname]['sec'] = [
            series[sname].sec[split_indices[sidx - 1]:split_indices[sidx]]
            for sidx in range(1, len(split_indices))
        ]
        series[sname]['val'] = [
            series[sname].val[split_indices[sidx - 1]:split_indices[sidx]]
            for sidx in range(1, len(split_indices))
        ]
    return series
示例#24
0
    def query_zigbee_status(self):
        """Retrieves the status information for the ZigBee network/deCONZ API."""
        rsp = networking.http_get_request(self.api_url)
        if rsp is None:  # pragma: no cover
            return common.make_response(
                False,
                message=
                _("Network error while querying the deCONZ API for the gateway status."
                  ))
        state = json.loads(rsp.content)

        deconz_state = AttributeDict({
            'api_version':
            state['config']['apiversion'],
            'sw_version':
            state['config']['swversion'],
            'channel':
            state['config']['zigbeechannel']
        })
        return common.make_response(True, zigbee_state=deconz_state)
示例#25
0
    def _parse_payment(
        self, payment_data: Dict, channel: models.Channel
    ) -> Optional[AttributeDict]:
        event_name = payment_data.pop("event")
        payment_data.pop("token_address", None)

        if event_name == "EventPaymentReceivedSuccess":
            payment_data["sender_address"] = payment_data.pop("initiator")
            payment_data["receiver_address"] = self.raiden.address
        elif event_name == "EventPaymentSentSuccess":
            payment_data["sender_address"] = self.raiden.address
            payment_data["receiver_address"] = payment_data.pop("target")
        else:
            return None

        iso_time = payment_data.pop("log_time")

        payment_data["amount"] = channel.token.from_wei(payment_data.pop("amount")).amount
        payment_data["timestamp"] = make_aware(datetime.fromisoformat(iso_time))
        return AttributeDict(payment_data)
示例#26
0
def _ssd_test_get_generators(
        args: argparse.Namespace, conf_obj: conf.Config,
        load_data_coco: callable, load_data_scenenet: callable,
        gt: AttributeDict,
        predictor_sizes: Sequence[Sequence[int]]) -> AttributeDict:

    from twomartens.masterthesis import data

    nr_trajectories = conf_obj.parameters.nr_trajectories if conf_obj.parameters.nr_trajectories != -1 else None

    if conf_obj.parameters.ssd_use_coco:
        generator, length, debug_generator = load_data_coco(
            data.clean_dataset,
            data.group_bboxes_to_images,
            conf_obj.paths.coco,
            conf_obj.parameters.batch_size,
            conf_obj.parameters.ssd_image_size,
            training=False,
            evaluation=True,
            augment=False,
            debug=args.debug,
            predictor_sizes=predictor_sizes)
    else:
        generator, length, debug_generator = load_data_scenenet(
            gt.file_names,
            gt.instances,
            conf_obj.paths.coco,
            predictor_sizes=predictor_sizes,
            batch_size=conf_obj.parameters.batch_size,
            image_size=conf_obj.parameters.ssd_image_size,
            training=False,
            evaluation=True,
            augment=False,
            debug=args.debug,
            nr_trajectories=nr_trajectories)

    return AttributeDict({
        "generator": generator,
        "length": length,
        "debug_generator": debug_generator
    })
示例#27
0
    def req_heating_jobs_add():
        _logger.info('Serving heating job ADD')
        if flask.request.method == 'POST':
            # Temperature and hysteresis can't be set via the web interface
            # This is on purpose (we never used it in home automation v1)
            start_hour = flask.request.values.get('start_hour', type=int)
            start_min = flask.request.values.get('start_minute', type=int)
            d_hours = flask.request.values.get('duration_hours', type=int)
            d_mins = flask.request.values.get('duration_minutes', type=int)
            creator = flask.request.values.get('creator', type=str, default='')
            if len(creator.strip()) == 0:
                creator = 'webinterface'
            temperature = flask.request.values.get('temperature', type=float, default=None)

            cfg = AttributeDict({
                'day_interval': 1,
                'at': f'{start_hour:02d}:{start_min:02d}',
                'duration': f'{d_hours:02d}:{d_mins:02d}',
                'temperature': temperature,
                # 'hysteresis': None,
                'created_by': creator
            })
            try:
                job = scheduling.PeriodicHeatingJob.from_attrdict(cfg)
                rsp = scheduling.scheduler.schedule_job(job, get_locale())
            except scheduling.ScheduleError as e:
                return _return_response(common.make_response(False, message=_('Exception:') + f' {e}'))

            if not rsp.success:
                return _return_response(rsp)

            if scheduling.scheduler.serialize_jobs():
                return _return_response(common.make_response(True,
                                                             message=_('Permanently added new heating job.')))
            else:
                return _return_response(common.make_response(False,
                                                             message=_('Added new heating job temporarily, because the new schedule could not be saved to disk.')))
        else:
            return flask.redirect(svc_urls.heating_ctrl)
示例#28
0
def _get_json(endpoint: str,
              params: dict = None,
              language: str = None,
              timeout: float = 2.0) -> object:
    if params is None:
        params = dict()
    params['json'] = True
    if language is not None:
        params['lang'] = language
    _logger.info(f'GET request: {url(endpoint)} params: {params}')
    rsp = networking.safe_http_get(url(endpoint),
                                   params=params,
                                   timeout=timeout)
    if rsp is None:
        _logger.error(f'Received no response from {url(endpoint)}.')
        return None
    elif rsp.status_code == 200:
        return AttributeDict(json.loads(rsp.content))
    else:
        _logger.error(
            f'Error querying {url(endpoint)}. Status code: {rsp.status_code}.')
        return None
示例#29
0
def _ssd_train_load_gt(conf_obj: conf.Config) -> AttributeDict:

    import pickle

    with open(f"{conf_obj.paths.scenenet_gt_train}/photo_paths.bin",
              "rb") as file:
        file_names_train = pickle.load(file)
    with open(f"{conf_obj.paths.scenenet_gt_train}/instances.bin",
              "rb") as file:
        instances_train = pickle.load(file)
    with open(f"{conf_obj.paths.scenenet_gt_val}/photo_paths.bin",
              "rb") as file:
        file_names_val = pickle.load(file)
    with open(f"{conf_obj.paths.scenenet_gt_val}/instances.bin", "rb") as file:
        instances_val = pickle.load(file)

    return AttributeDict({
        "file_names_train": file_names_train,
        "instances_train": instances_train,
        "file_names_val": file_names_val,
        "instances_val": instances_val
    })
示例#30
0
 def report(self):
     """Return the current weather report and forecast."""
     try:
         one_call = self._mgr.one_call(lat=self._latitude,
                                       lon=self._longitude,
                                       exclude='minutely,daily,alerts',
                                       units='metric')
         # PyOWM v3 uses the new "one call" API:
         # new one call api: https://openweathermap.org/api/one-call-api
         # Documentation of PyOWM-internal representation:
         # https://pyowm.readthedocs.io/en/latest/_modules/pyowm/weatherapi25/weather.html
         return AttributeDict({
             'current':
             Weather.fromOwmWeather(one_call.current, self._language),
             'forecast': [
                 Weather.fromOwmWeather(w, self._language)
                 for w in one_call.forecast_hourly
             ]
         })
     except PyOWMError as e:  #pragma: no cover
         _logger.error(
             f'Error querying OpenWeatherMap current weather: {e}')
         return None