def __init__(self, keys, dir_name='/home/brihi16142/work2/processed_emovdb_disgust'): self.keys = keys self.path = os.path.join(os.path.dirname(os.path.realpath(__file__)), dir_name) self.fnames, self.text_lengths, self.texts = read_metadata( os.path.join(self.path, 'transcript_bea.csv')) preprocess(dir_name, self) print('Generated mels and mags')
def find_matches(samples, sr=RATE): """Finds fingerprint matches for the samples.""" print('Finding matching fingerprints...') samples = preprocess(samples, sr) fingerprints = generate_fingerprints('Microphone', samples, sr=sr, plot=False) print('Looking up matches in database...') matches = lookup_fingerprints(fingerprints) print('{} Matches'.format(len(matches))) if len(matches) == 0: return None mapper = {} for f in fingerprints: mapper[f.hash] = f.time diffed_matches = [] for f in matches: diffed_matches.append((f.song_id, f.time - mapper[f.hash])) return diffed_matches
def read_audio_file(filename): """Read MP3 file into a Song object.""" if not os.path.isfile(filename): print('{} does not exists'.format(filename)) exit(1) # Read metadata from song meta = TinyTag.get(filename) # Read mp3 and save as tempoary wavfile ext = os.path.splitext(filename)[1].replace('.', '') song = AudioSegment.from_file(filename, ext) tmp_path = './tmp_{}'.format(os.path.basename(filename)) song.export(tmp_path, format='wav') # Read and delete tempory wavefile samplerate, samples = wav.read(tmp_path) os.remove(tmp_path) samples = preprocess(samples, samplerate) s = Song(filename, meta, samples, samplerate) return s
sys.exit(0) else: dataset_file_path = os.path.join(datasets_path, dataset_file_name) if not os.path.isfile(dataset_file_path): url = "http://data.keithito.com/data/speech/%s" % dataset_file_name download_file(url, dataset_file_path) else: print("'%s' already exists" % dataset_file_name) print("extracting '%s'..." % dataset_file_name) os.system('cd %s; tar xvjf %s' % (datasets_path, dataset_file_name)) # pre process print("pre processing...") lj_speech = LJSpeech([]) preprocess(dataset_path, lj_speech) elif args.dataset == 'mbspeech': dataset_name = 'MBSpeech-1.0' datasets_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'datasets') dataset_path = os.path.join(datasets_path, dataset_name) if os.path.isdir(dataset_path) and False: print("MBSpeech dataset folder already exists") sys.exit(0) else: bible_books = ['01_Genesis', '02_Exodus', '03_Leviticus'] for bible_book_name in bible_books: bible_book_file_name = '%s.zip' % bible_book_name bible_book_file_path = os.path.join(datasets_path, bible_book_file_name)
""" Gives an answer. """ box = driver.find_element_by_id("qpAnswerInput") box.send_keys(ans) box.send_keys(Keys.RETURN) if __name__ == "__main__": driver = login() enter_game(driver, input("Room name? "), int(input("Room number? ")), input("Room password? ")) while True: try: block_recording(driver) print("starting recording...") data = audio.record(LEN) audio.sd.wait() # block on the recording print("processing...") vol1, clip = audio.preprocess(data) ans = main.find_song(vol1, clip, VERBOSE) if audio.np.max(clip) == 128: # 0 is at 128 because of the scaling print("Clip is silent. Are you sure loopback is working?") answer(driver, ans) except KeyboardInterrupt: driver.quit() exit() except Exception as e: print(e) ans = input("quit driver?\n") if len(ans) > 0 and ans[0] == "y": driver.quit()
args = parser.parse_args() if args.dataset == 'ljspeech': dataset_file_name = 'LJSpeech-1.1.tar.bz2' datasets_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'datasets') dataset_path = os.path.join(datasets_path, 'LJSpeech-1.1') if os.path.isdir(dataset_path) and False: print("LJSpeech dataset folder already exists") sys.exit(0) else: dataset_file_path = os.path.join(datasets_path, dataset_file_name) if not os.path.isfile(dataset_file_path): url = "http://data.keithito.com/data/speech/%s" % dataset_file_name download_file(url, dataset_file_path) else: #print(os.system('pwd')) #os.system('ls -al') print("'%s' already exists" % dataset_file_name) print("extracting '%s'..." % dataset_file_name) #os.system('cd %s; tar xvjf %s' % (datasets_path, dataset_file_name)) os.system('cd datasets') os.system('tar xvjf %s' % (dataset_file_name)) # pre process print("pre processing...") lj_speech = LJSpeech([]) preprocess(dataset_path, lj_speech)
from audio import preprocess voice = 'LJ' preprocess(f'datasets/{voice}') print("done")
sys.exit(0) else: dataset_file_path = os.path.join(datasets_path, dataset_file_name) if not os.path.isfile(dataset_file_path): url = "http://data.keithito.com/data/speech/%s" % dataset_file_name download_file(url, dataset_file_path) else: print("'%s' already exists" % dataset_file_name) print("extracting '%s'..." % dataset_file_name) os.system('cd %s; tar xvjf %s' % (datasets_path, dataset_file_name)) # pre process print("pre processing...") lj_speech = LJSpeech([]) preprocess(dataset_path, lj_speech) elif args.dataset == 'en_uk': dataset_file_name = 'en_UK.tgz' datasets_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '') dataset_path = os.path.join(datasets_path, 'en_UK') if os.path.isdir(dataset_path) and False: print("en_UK dataset folder already exists") sys.exit(0) else: dataset_file_path = os.path.join(datasets_path, dataset_file_name) if not os.path.isfile(dataset_file_path): url = "http://data.m-ailabs.bayern/data/Training/stt_tts/%s" % dataset_file_name download_file(url, dataset_file_path) else: print("'%s' already exists" % dataset_file_name)
import os import sys import csv import time import argparse import fnmatch import librosa import pandas as pd from hparams import HParams as hp from zipfile import ZipFile from audio import preprocess from utils import download_file from datasets.np_speech import NPSpeech parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--dataset", required=True, choices=['NPSpeech'], help='dataset name') args = parser.parse_args() args.dataset == 'NPSpeech': dataset_name = 'NPSpeech-1.0' datasets_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'datasets') dataset_path = os.path.join(datasets_path, dataset_name) # pre process print("pre processing...") np_speech = NPSpeech([]) preprocess(dataset_path, np_speech)