def mtFileClassification(inputFile, modelName, modelType, plotResults = False, gtFile = ""): ''' This function performs mid-term classification of an audio stream. Towards this end, supervised knowledge is used, i.e. a pre-trained classifier. ARGUMENTS: - inputFile: path of the input WAV file - modelName: name of the classification model - modelType: svm or knn depending on the classifier type - plotResults: True if results are to be plotted using matplotlib along with a set of statistics RETURNS: - segs: a sequence of segment's endpoints: segs[i] is the endpoint of the i-th segment (in seconds) - classes: a sequence of class flags: class[i] is the class ID of the i-th segment ''' if not os.path.isfile(modelName): print "mtFileClassificationError: input modelType not found!" return (-1,-1,-1) # Load classifier: if modelType=='svm': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = aT.loadSVModel(modelName) elif modelType=='knn': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = aT.loadKNNModel(modelName) if computeBEAT: print "Model " + modelName + " contains long-term music features (beat etc) and cannot be used in segmentation" return (-1,-1,-1) [Fs, x] = audioBasicIO.readAudioFile(inputFile) # load input file if Fs == -1: # could not read file return (-1,-1,-1) x = audioBasicIO.stereo2mono(x); # convert stereo (if) to mono Duration = len(x) / Fs # mid-term feature extraction: [MidTermFeatures, _] = aF.mtFeatureExtraction(x, Fs, mtWin * Fs, mtStep * Fs, round(Fs*stWin), round(Fs*stStep)); flags = []; Ps = []; flagsInd = [] for i in range(MidTermFeatures.shape[1]): # for each feature vector (i.e. for each fix-sized segment): curFV = (MidTermFeatures[:, i] - MEAN) / STD; # normalize current feature vector [Result, P] = aT.classifierWrapper(Classifier, modelType, curFV) # classify vector flagsInd.append(Result) flags.append(classNames[int(Result)]) # update class label matrix Ps.append(numpy.max(P)) # update probability matrix flagsInd = numpy.array(flagsInd) # 1-window smoothing for i in range(1, len(flagsInd)-1): if flagsInd[i-1]==flagsInd[i+1]: flagsInd[i] = flagsInd[i+1] (segs, classes) = flags2segs(flags, mtStep) # convert fix-sized flags to segments and classes segs[-1] = len(x) / float(Fs) # Load grount-truth: if os.path.isfile(gtFile): [segStartGT, segEndGT, segLabelsGT] = readSegmentGT(gtFile) flagsGT, classNamesGT = segs2flags(segStartGT, segEndGT, segLabelsGT, mtStep) flagsIndGT = [] for j, fl in enumerate(flagsGT): # "align" labels with GT if classNamesGT[flagsGT[j]] in classNames: flagsIndGT.append( classNames.index( classNamesGT[flagsGT[j]] ) ) else: flagsIndGT.append( -1 ) flagsIndGT = numpy.array(flagsIndGT) else: flagsIndGT = numpy.array([]) acc = plotSegmentationResults(flagsInd, flagsIndGT, classNames, mtStep, not plotResults) if acc>=0: print "Overall Accuracy: {0:.3f}".format(acc) return (flagsInd, classNames, acc)
def speakerDiarization(fileName, numOfSpeakers, mtSize = 2.0, mtStep=0.2, stWin=0.05, LDAdim = 35, PLOT = False): ''' ARGUMENTS: - fileName: the name of the WAV file to be analyzed - numOfSpeakers the number of speakers (clusters) in the recording (<=0 for unknown) - mtSize (opt) mid-term window size - mtStep (opt) mid-term window step - stWin (opt) short-term window size - LDAdim (opt) LDA dimension (0 for no LDA) - PLOT (opt) 0 for not plotting the results 1 for plottingy ''' [Fs, x] = audioBasicIO.readAudioFile(fileName) x = audioBasicIO.stereo2mono(x); Duration = len(x) / Fs [Classifier1, MEAN1, STD1, classNames1, mtWin1, mtStep1, stWin1, stStep1, computeBEAT1] = aT.loadKNNModel("data/knnSpeakerAll") [Classifier2, MEAN2, STD2, classNames2, mtWin2, mtStep2, stWin2, stStep2, computeBEAT2] = aT.loadKNNModel("data/knnSpeakerFemaleMale") [MidTermFeatures, ShortTermFeatures] = aF.mtFeatureExtraction(x, Fs, mtSize * Fs, mtStep * Fs, round(Fs*stWin), round(Fs*stWin*0.5)); MidTermFeatures2 = numpy.zeros( (MidTermFeatures.shape[0] + len(classNames1) + len(classNames2), MidTermFeatures.shape[1] ) ) for i in range(MidTermFeatures.shape[1]): curF1 = (MidTermFeatures[:,i] - MEAN1) / STD1 curF2 = (MidTermFeatures[:,i] - MEAN2) / STD2 [Result, P1] = aT.classifierWrapper(Classifier1, "knn", curF1) [Result, P2] = aT.classifierWrapper(Classifier2, "knn", curF2) MidTermFeatures2[0:MidTermFeatures.shape[0], i] = MidTermFeatures[:, i] MidTermFeatures2[MidTermFeatures.shape[0]:MidTermFeatures.shape[0]+len(classNames1), i] = P1 + 0.0001; MidTermFeatures2[MidTermFeatures.shape[0]+len(classNames1)::, i] = P2 + 0.0001; MidTermFeatures = MidTermFeatures2 # TODO # SELECT FEATURES: #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20]; # SET 0A #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 99,100]; # SET 0B #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 0C iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53]; # SET 1A #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 1B #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 1C #iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53]; # SET 2A #iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 2B #iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 2C #iFeaturesSelect = range(100); # SET 3 #MidTermFeatures += numpy.random.rand(MidTermFeatures.shape[0], MidTermFeatures.shape[1]) * 0.000000010 MidTermFeatures = MidTermFeatures[iFeaturesSelect,:] (MidTermFeaturesNorm, MEAN, STD) = aT.normalizeFeatures([MidTermFeatures.T]) MidTermFeaturesNorm = MidTermFeaturesNorm[0].T numOfWindows = MidTermFeatures.shape[1] # remove outliers: DistancesAll = numpy.sum(distance.squareform(distance.pdist(MidTermFeaturesNorm.T)), axis=0) MDistancesAll = numpy.mean(DistancesAll) iNonOutLiers = numpy.nonzero(DistancesAll < 1.2*MDistancesAll)[0] # TODO: Combine energy threshold for outlier removal: #EnergyMin = numpy.min(MidTermFeatures[1,:]) #EnergyMean = numpy.mean(MidTermFeatures[1,:]) #Thres = (1.5*EnergyMin + 0.5*EnergyMean) / 2.0 #iNonOutLiers = numpy.nonzero(MidTermFeatures[1,:] > Thres)[0] #print iNonOutLiers perOutLier = (100.0*(numOfWindows-iNonOutLiers.shape[0])) / numOfWindows MidTermFeaturesNormOr = MidTermFeaturesNorm MidTermFeaturesNorm = MidTermFeaturesNorm[:, iNonOutLiers] # LDA dimensionality reduction: if LDAdim > 0: #[mtFeaturesToReduce, _] = aF.mtFeatureExtraction(x, Fs, mtSize * Fs, stWin * Fs, round(Fs*stWin), round(Fs*stWin)); # extract mid-term features with minimum step: mtWinRatio = int(round(mtSize / stWin)); mtStepRatio = int(round(stWin / stWin)); mtFeaturesToReduce = [] numOfFeatures = len(ShortTermFeatures) numOfStatistics = 2; #for i in range(numOfStatistics * numOfFeatures + 1): for i in range(numOfStatistics * numOfFeatures): mtFeaturesToReduce.append([]) for i in range(numOfFeatures): # for each of the short-term features: curPos = 0 N = len(ShortTermFeatures[i]) while (curPos<N): N1 = curPos N2 = curPos + mtWinRatio if N2 > N: N2 = N curStFeatures = ShortTermFeatures[i][N1:N2] mtFeaturesToReduce[i].append(numpy.mean(curStFeatures)) mtFeaturesToReduce[i+numOfFeatures].append(numpy.std(curStFeatures)) curPos += mtStepRatio mtFeaturesToReduce = numpy.array(mtFeaturesToReduce) mtFeaturesToReduce2 = numpy.zeros( (mtFeaturesToReduce.shape[0] + len(classNames1) + len(classNames2), mtFeaturesToReduce.shape[1] ) ) for i in range(mtFeaturesToReduce.shape[1]): curF1 = (mtFeaturesToReduce[:,i] - MEAN1) / STD1 curF2 = (mtFeaturesToReduce[:,i] - MEAN2) / STD2 [Result, P1] = aT.classifierWrapper(Classifier1, "knn", curF1) [Result, P2] = aT.classifierWrapper(Classifier2, "knn", curF2) mtFeaturesToReduce2[0:mtFeaturesToReduce.shape[0], i] = mtFeaturesToReduce[:, i] mtFeaturesToReduce2[mtFeaturesToReduce.shape[0]:mtFeaturesToReduce.shape[0]+len(classNames1), i] = P1 + 0.0001; mtFeaturesToReduce2[mtFeaturesToReduce.shape[0]+len(classNames1)::, i] = P2 + 0.0001; mtFeaturesToReduce = mtFeaturesToReduce2 mtFeaturesToReduce = mtFeaturesToReduce[iFeaturesSelect,:] #mtFeaturesToReduce += numpy.random.rand(mtFeaturesToReduce.shape[0], mtFeaturesToReduce.shape[1]) * 0.0000010 (mtFeaturesToReduce, MEAN, STD) = aT.normalizeFeatures([mtFeaturesToReduce.T]) mtFeaturesToReduce = mtFeaturesToReduce[0].T #DistancesAll = numpy.sum(distance.squareform(distance.pdist(mtFeaturesToReduce.T)), axis=0) #MDistancesAll = numpy.mean(DistancesAll) #iNonOutLiers2 = numpy.nonzero(DistancesAll < 3.0*MDistancesAll)[0] #mtFeaturesToReduce = mtFeaturesToReduce[:, iNonOutLiers2] Labels = numpy.zeros((mtFeaturesToReduce.shape[1],)); LDAstep = 1.0 LDAstepRatio = LDAstep / stWin #print LDAstep, LDAstepRatio for i in range(Labels.shape[0]): Labels[i] = int(i*stWin/LDAstepRatio); clf = LDA(n_components=LDAdim) clf.fit(mtFeaturesToReduce.T, Labels, tol=0.000001) MidTermFeaturesNorm = (clf.transform(MidTermFeaturesNorm.T)).T if numOfSpeakers<=0: sRange = range(2,10) else: sRange = [numOfSpeakers] clsAll = []; silAll = []; centersAll = [] for iSpeakers in sRange: cls, means, steps = mlpy.kmeans(MidTermFeaturesNorm.T, k=iSpeakers, plus=True) # perform k-means clustering #YDist = distance.pdist(MidTermFeaturesNorm.T, metric='euclidean') #print distance.squareform(YDist).shape #hc = mlpy.HCluster() #hc.linkage(YDist) #cls = hc.cut(14.5) #print cls # Y = distance.squareform(distance.pdist(MidTermFeaturesNorm.T)) clsAll.append(cls) centersAll.append(means) silA = []; silB = [] for c in range(iSpeakers): # for each speaker (i.e. for each extracted cluster) clusterPerCent = numpy.nonzero(cls==c)[0].shape[0] / float(len(cls)) if clusterPerCent < 0.020: silA.append(0.0) silB.append(0.0) else: MidTermFeaturesNormTemp = MidTermFeaturesNorm[:,cls==c] # get subset of feature vectors Yt = distance.pdist(MidTermFeaturesNormTemp.T) # compute average distance between samples that belong to the cluster (a values) silA.append(numpy.mean(Yt)*clusterPerCent) silBs = [] for c2 in range(iSpeakers): # compute distances from samples of other clusters if c2!=c: clusterPerCent2 = numpy.nonzero(cls==c2)[0].shape[0] / float(len(cls)) MidTermFeaturesNormTemp2 = MidTermFeaturesNorm[:,cls==c2] Yt = distance.cdist(MidTermFeaturesNormTemp.T, MidTermFeaturesNormTemp2.T) silBs.append(numpy.mean(Yt)*(clusterPerCent+clusterPerCent2)/2.0) silBs = numpy.array(silBs) silB.append(min(silBs)) # ... and keep the minimum value (i.e. the distance from the "nearest" cluster) silA = numpy.array(silA); silB = numpy.array(silB); sil = [] for c in range(iSpeakers): # for each cluster (speaker) sil.append( ( silB[c] - silA[c]) / (max(silB[c], silA[c])+0.00001) ) # compute silhouette silAll.append(numpy.mean(sil)) # keep the AVERAGE SILLOUETTE #silAll = silAll * (1.0/(numpy.power(numpy.array(sRange),0.5))) imax = numpy.argmax(silAll) # position of the maximum sillouette value nSpeakersFinal = sRange[imax] # optimal number of clusters # generate the final set of cluster labels # (important: need to retrieve the outlier windows: this is achieved by giving them the value of their nearest non-outlier window) cls = numpy.zeros((numOfWindows,)) for i in range(numOfWindows): j = numpy.argmin(numpy.abs(i-iNonOutLiers)) cls[i] = clsAll[imax][j] # Post-process method 1: hmm smoothing for i in range(1): startprob, transmat, means, cov = trainHMM_computeStatistics(MidTermFeaturesNormOr, cls) hmm = sklearn.hmm.GaussianHMM(startprob.shape[0], "diag", startprob, transmat) # hmm training hmm.means_ = means; hmm.covars_ = cov cls = hmm.predict(MidTermFeaturesNormOr.T) # Post-process method 2: median filtering: cls = scipy.signal.medfilt(cls, 13) cls = scipy.signal.medfilt(cls, 11) sil = silAll[imax] # final sillouette classNames = ["speaker{0:d}".format(c) for c in range(nSpeakersFinal)]; # load ground-truth if available gtFile = fileName.replace('.wav', '.segments'); # open for annotated file if os.path.isfile(gtFile): # if groundturh exists [segStart, segEnd, segLabels] = readSegmentGT(gtFile) # read GT data flagsGT, classNamesGT = segs2flags(segStart, segEnd, segLabels, mtStep) # convert to flags if PLOT: fig = plt.figure() if numOfSpeakers>0: ax1 = fig.add_subplot(111) else: ax1 = fig.add_subplot(211) ax1.set_yticks(numpy.array(range(len(classNames)))) ax1.axis((0, Duration, -1, len(classNames))) ax1.set_yticklabels(classNames) ax1.plot(numpy.array(range(len(cls)))*mtStep+mtStep/2.0, cls) if os.path.isfile(gtFile): if PLOT: ax1.plot(numpy.array(range(len(flagsGT)))*mtStep+mtStep/2.0, flagsGT, 'r') purityClusterMean, puritySpeakerMean = evaluateSpeakerDiarization(cls, flagsGT) print "{0:.1f}\t{1:.1f}".format(100*purityClusterMean, 100*puritySpeakerMean) if PLOT: plt.title("Cluster purity: {0:.1f}% - Speaker purity: {1:.1f}%".format(100*purityClusterMean, 100*puritySpeakerMean) ) if PLOT: plt.xlabel("time (seconds)") #print sRange, silAll if numOfSpeakers<=0: plt.subplot(212) plt.plot(sRange, silAll) plt.xlabel("number of clusters"); plt.ylabel("average clustering's sillouette"); plt.show()
def speakerDiarization(filename, n_speakers, mt_size=2.0, mt_step=0.2, st_win=0.05, lda_dim=35, plot_res=False): ''' ARGUMENTS: - filename: the name of the WAV file to be analyzed - n_speakers the number of speakers (clusters) in the recording (<=0 for unknown) - mt_size (opt) mid-term window size - mt_step (opt) mid-term window step - st_win (opt) short-term window size - lda_dim (opt) LDA dimension (0 for no LDA) - plot_res (opt) 0 for not plotting the results 1 for plottingy ''' [fs, x] = audioBasicIO.readAudioFile(filename) x = audioBasicIO.stereo2mono(x) duration = len(x) / fs # [classifier_1, MEAN1, STD1, classNames1, mtWin1, mtStep1, stWin1, stStep1, computeBEAT1] = aT.load_model_knn(os.path.join(os.path.dirname(os.path.realpath(__file__)), "data", "knnSpeakerAll")) # [classifier_2, MEAN2, STD2, classNames2, mtWin2, mtStep2, stWin2, stStep2, computeBEAT2] = aT.load_model_knn(os.path.join(os.path.dirname(os.path.realpath(__file__)), "data", "knnSpeakerFemaleMale")) [ classifier_1, MEAN1, STD1, classNames1, mtWin1, mtStep1, stWin1, stStep1, computeBEAT1 ] = aT.load_model_knn("data/knnSpeakerAll") [ classifier_2, MEAN2, STD2, classNames2, mtWin2, mtStep2, stWin2, stStep2, computeBEAT2 ] = aT.load_model_knn("data/knnSpeakerFemaleMale") [mt_feats, st_feats, _] = aF.mtFeatureExtraction(x, fs, mt_size * fs, mt_step * fs, round(fs * st_win), round(fs * st_win * 0.5)) MidTermFeatures2 = numpy.zeros( (mt_feats.shape[0] + len(classNames1) + len(classNames2), mt_feats.shape[1])) for i in range(mt_feats.shape[1]): cur_f1 = (mt_feats[:, i] - MEAN1) / STD1 cur_f2 = (mt_feats[:, i] - MEAN2) / STD2 [res, P1] = aT.classifierWrapper(classifier_1, "knn", cur_f1) [res, P2] = aT.classifierWrapper(classifier_2, "knn", cur_f2) MidTermFeatures2[0:mt_feats.shape[0], i] = mt_feats[:, i] MidTermFeatures2[mt_feats.shape[0]:mt_feats.shape[0] + len(classNames1), i] = P1 + 0.0001 MidTermFeatures2[mt_feats.shape[0] + len(classNames1)::, i] = P2 + 0.0001 mt_feats = MidTermFeatures2 # TODO iFeaturesSelect = [ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53 ] mt_feats = mt_feats[iFeaturesSelect, :] (mt_feats_norm, MEAN, STD) = aT.normalizeFeatures([mt_feats.T]) mt_feats_norm = mt_feats_norm[0].T n_wins = mt_feats.shape[1] # remove outliers: dist_all = numpy.sum(distance.squareform(distance.pdist(mt_feats_norm.T)), axis=0) m_dist_all = numpy.mean(dist_all) i_non_outliers = numpy.nonzero(dist_all < 1.2 * m_dist_all)[0] # TODO: Combine energy threshold for outlier removal: #EnergyMin = numpy.min(mt_feats[1,:]) #EnergyMean = numpy.mean(mt_feats[1,:]) #Thres = (1.5*EnergyMin + 0.5*EnergyMean) / 2.0 #i_non_outliers = numpy.nonzero(mt_feats[1,:] > Thres)[0] #print i_non_outliers perOutLier = (100.0 * (n_wins - i_non_outliers.shape[0])) / n_wins mt_feats_norm_or = mt_feats_norm mt_feats_norm = mt_feats_norm[:, i_non_outliers] # LDA dimensionality reduction: if lda_dim > 0: #[mt_feats_to_red, _, _] = aF.mtFeatureExtraction(x, fs, mt_size * fs, st_win * fs, round(fs*st_win), round(fs*st_win)); # extract mid-term features with minimum step: mt_win_ratio = int(round(mt_size / st_win)) mt_step_ratio = int(round(st_win / st_win)) mt_feats_to_red = [] num_of_features = len(st_feats) num_of_stats = 2 #for i in range(num_of_stats * num_of_features + 1): for i in range(num_of_stats * num_of_features): mt_feats_to_red.append([]) for i in range( num_of_features): # for each of the short-term features: curPos = 0 N = len(st_feats[i]) while (curPos < N): N1 = curPos N2 = curPos + mt_win_ratio if N2 > N: N2 = N curStFeatures = st_feats[i][N1:N2] mt_feats_to_red[i].append(numpy.mean(curStFeatures)) mt_feats_to_red[i + num_of_features].append( numpy.std(curStFeatures)) curPos += mt_step_ratio mt_feats_to_red = numpy.array(mt_feats_to_red) mt_feats_to_red_2 = numpy.zeros( (mt_feats_to_red.shape[0] + len(classNames1) + len(classNames2), mt_feats_to_red.shape[1])) for i in range(mt_feats_to_red.shape[1]): cur_f1 = (mt_feats_to_red[:, i] - MEAN1) / STD1 cur_f2 = (mt_feats_to_red[:, i] - MEAN2) / STD2 [res, P1] = aT.classifierWrapper(classifier_1, "knn", cur_f1) [res, P2] = aT.classifierWrapper(classifier_2, "knn", cur_f2) mt_feats_to_red_2[0:mt_feats_to_red.shape[0], i] = mt_feats_to_red[:, i] mt_feats_to_red_2[ mt_feats_to_red.shape[0]:mt_feats_to_red.shape[0] + len(classNames1), i] = P1 + 0.0001 mt_feats_to_red_2[mt_feats_to_red.shape[0] + len(classNames1)::, i] = P2 + 0.0001 mt_feats_to_red = mt_feats_to_red_2 mt_feats_to_red = mt_feats_to_red[iFeaturesSelect, :] #mt_feats_to_red += numpy.random.rand(mt_feats_to_red.shape[0], mt_feats_to_red.shape[1]) * 0.0000010 (mt_feats_to_red, MEAN, STD) = aT.normalizeFeatures([mt_feats_to_red.T]) mt_feats_to_red = mt_feats_to_red[0].T #dist_all = numpy.sum(distance.squareform(distance.pdist(mt_feats_to_red.T)), axis=0) #m_dist_all = numpy.mean(dist_all) #iNonOutLiers2 = numpy.nonzero(dist_all < 3.0*m_dist_all)[0] #mt_feats_to_red = mt_feats_to_red[:, iNonOutLiers2] Labels = numpy.zeros((mt_feats_to_red.shape[1], )) LDAstep = 1.0 LDAstepRatio = LDAstep / st_win #print LDAstep, LDAstepRatio for i in range(Labels.shape[0]): Labels[i] = int(i * st_win / LDAstepRatio) clf = sklearn.discriminant_analysis.LinearDiscriminantAnalysis( n_components=lda_dim) clf.fit(mt_feats_to_red.T, Labels) mt_feats_norm = (clf.transform(mt_feats_norm.T)).T if n_speakers <= 0: s_range = range(2, 10) else: s_range = [n_speakers] clsAll = [] sil_all = [] centersAll = [] for iSpeakers in s_range: k_means = sklearn.cluster.KMeans(n_clusters=iSpeakers) k_means.fit(mt_feats_norm.T) cls = k_means.labels_ means = k_means.cluster_centers_ # Y = distance.squareform(distance.pdist(mt_feats_norm.T)) clsAll.append(cls) centersAll.append(means) sil_1 = [] sil_2 = [] for c in range(iSpeakers): # for each speaker (i.e. for each extracted cluster) clust_per_cent = numpy.nonzero(cls == c)[0].shape[0] / \ float(len(cls)) if clust_per_cent < 0.020: sil_1.append(0.0) sil_2.append(0.0) else: # get subset of feature vectors mt_feats_norm_temp = mt_feats_norm[:, cls == c] # compute average distance between samples # that belong to the cluster (a values) Yt = distance.pdist(mt_feats_norm_temp.T) sil_1.append(numpy.mean(Yt) * clust_per_cent) silBs = [] for c2 in range(iSpeakers): # compute distances from samples of other clusters if c2 != c: clust_per_cent_2 = numpy.nonzero(cls == c2)[0].shape[0] /\ float(len(cls)) MidTermFeaturesNormTemp2 = mt_feats_norm[:, cls == c2] Yt = distance.cdist(mt_feats_norm_temp.T, MidTermFeaturesNormTemp2.T) silBs.append( numpy.mean(Yt) * (clust_per_cent + clust_per_cent_2) / 2.0) silBs = numpy.array(silBs) # ... and keep the minimum value (i.e. # the distance from the "nearest" cluster) sil_2.append(min(silBs)) sil_1 = numpy.array(sil_1) sil_2 = numpy.array(sil_2) sil = [] for c in range(iSpeakers): # for each cluster (speaker) compute silhouette sil.append( (sil_2[c] - sil_1[c]) / (max(sil_2[c], sil_1[c]) + 0.00001)) # keep the AVERAGE SILLOUETTE sil_all.append(numpy.mean(sil)) imax = numpy.argmax(sil_all) # optimal number of clusters nSpeakersFinal = s_range[imax] # generate the final set of cluster labels # (important: need to retrieve the outlier windows: # this is achieved by giving them the value of their # nearest non-outlier window) cls = numpy.zeros((n_wins, )) for i in range(n_wins): j = numpy.argmin(numpy.abs(i - i_non_outliers)) cls[i] = clsAll[imax][j] # Post-process method 1: hmm smoothing for i in range(1): # hmm training start_prob, transmat, means, cov = \ trainHMM_computeStatistics(mt_feats_norm_or, cls) hmm = hmmlearn.hmm.GaussianHMM(start_prob.shape[0], "diag") hmm.startprob_ = start_prob hmm.transmat_ = transmat hmm.means_ = means hmm.covars_ = cov cls = hmm.predict(mt_feats_norm_or.T) # Post-process method 2: median filtering: cls = scipy.signal.medfilt(cls, 13) cls = scipy.signal.medfilt(cls, 11) sil = sil_all[imax] class_names = ["speaker{0:d}".format(c) for c in range(nSpeakersFinal)] # load ground-truth if available gt_file = filename.replace('.wav', '.segments') # if groundturh exists if os.path.isfile(gt_file): [seg_start, seg_end, seg_labs] = readSegmentGT(gt_file) flags_gt, class_names_gt = segs2flags(seg_start, seg_end, seg_labs, mt_step) if plot_res: fig = plt.figure() if n_speakers > 0: ax1 = fig.add_subplot(111) else: ax1 = fig.add_subplot(211) ax1.set_yticks(numpy.array(range(len(class_names)))) ax1.axis((0, duration, -1, len(class_names))) ax1.set_yticklabels(class_names) ax1.plot(numpy.array(range(len(cls))) * mt_step + mt_step / 2.0, cls) if os.path.isfile(gt_file): if plot_res: ax1.plot( numpy.array(range(len(flags_gt))) * mt_step + mt_step / 2.0, flags_gt, 'r') purity_cluster_m, purity_speaker_m = \ evaluateSpeakerDiarization(cls, flags_gt) print("{0:.1f}\t{1:.1f}".format(100 * purity_cluster_m, 100 * purity_speaker_m)) if plot_res: plt.title("Cluster purity: {0:.1f}% - " "Speaker purity: {1:.1f}%".format( 100 * purity_cluster_m, 100 * purity_speaker_m)) if plot_res: plt.xlabel("time (seconds)") #print s_range, sil_all if n_speakers <= 0: plt.subplot(212) plt.plot(s_range, sil_all) plt.xlabel("number of clusters") plt.ylabel("average clustering's sillouette") #plt.show() plt.savefig('output/outImg.jpg') return cls
def speaker_diarization(file_name, num_speaker, mt_size=2.0, mt_step=0.2, st_win=0.05, st_step=0.025, lda_dim=35, plot=False): ''' ARGUMENTS: - fileName: the name of the WAV file to be analyzed - numOfSpeakers the number of speakers (clusters) in the recording (<=0 for unknown) - mtSize (opt) mid-term window size - mtStep (opt) mid-term window step - stWin (opt) short-term window size - LDAdim (opt) LDA dimension (0 for no LDA) - PLOT (opt) 0 for not plotting the results 1 for plottingy ''' fr, x = audio_basic_io.read_audio_file(file_name) x = audio_basic_io.stereo2mono(x) duration = len(x) / fr classifier1, mean1, std1, class_names1, mt_win1, mt_step1, st_win1, st_step1, compute_beta1 = aT.loadKNNModel( os.path.join("data", "knnSpeakerAll")) classifier2, mean2, std2, class_names2, mt_win2, mt_step2, st_win2, st_step2, compute_beta2 = aT.loadKNNModel( os.path.join("data", "knnSpeakerFemaleMale")) mid_term_features, short_term_features = aF.mt_feature_extraction(signal=x, fr=fr, mt_win=mt_size * fr, mt_step=mt_step * fr, st_win=round(fr * st_win), st_step=round(fr * st_step)) # (68, 329) (34, 2630) print(mid_term_features.shape, short_term_features.shape) mid_term_features2 = np.zeros((mid_term_features.shape[0] + len(class_names1) + len(class_names2), mid_term_features.shape[1])) for i in range(mid_term_features.shape[1]): cur_f1 = (mid_term_features[:, i] - mean1) / std1 cur_f2 = (mid_term_features[:, i] - mean2) / std2 result, p1 = aT.classifierWrapper(classifier1, "knn", cur_f1) result, p2 = aT.classifierWrapper(classifier2, "knn", cur_f2) mid_term_features2[0:mid_term_features.shape[0], i] = mid_term_features[:, i] mid_term_features2[mid_term_features.shape[0]:mid_term_features.shape[0] + len(class_names1), i] = p1 + 0.0001 mid_term_features2[mid_term_features.shape[0] + len(class_names1)::, i] = p2 + 0.0001 mid_term_features = mid_term_features2 # TODO # SELECT FEATURES: # iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20]; # SET 0A # iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 99,100]; # SET 0B # iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 68,69,70,71,72,73, # 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96, # 97,98, 99,100]; # SET 0C i_features_select = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] # SET 1A # iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 1B # iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47, # 48,49,50,51,52,53, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86, # 87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 1C # iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35, # 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53]; # SET 2A # iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35, # 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 2B # iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35, # 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 68,69,70,71,72,73,74,75, # 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 2C # iFeaturesSelect = range(100); # SET 3 # MidTermFeatures += np.random.rand(MidTermFeatures.shape[0], MidTermFeatures.shape[1]) * 0.000000010 mid_term_features = mid_term_features[i_features_select, :] mid_term_features_norm, mean, std = aT.normalizeFeatures([mid_term_features.T]) mid_term_features_norm = mid_term_features_norm[0].T num_of_windows = mid_term_features.shape[1] # remove outliers: distances_all = np.sum(distance.squareform(distance.pdist(mid_term_features_norm.T)), axis=0) m_distances_all = np.mean(distances_all) i_non_out_liers = np.nonzero(distances_all < 1.2 * m_distances_all)[0] # TODO: Combine energy threshold for outlier removal: # EnergyMin = np.min(MidTermFeatures[1,:]) # EnergyMean = np.mean(MidTermFeatures[1,:]) # Thres = (1.5*EnergyMin + 0.5*EnergyMean) / 2.0 # iNonOutLiers = np.nonzero(MidTermFeatures[1,:] > Thres)[0] # print(iNonOutLiers # per_out_lier = (100.0 * (num_of_windows - i_non_out_liers.shape[0])) / num_of_windows mid_term_features_norm_or = mid_term_features_norm mid_term_features_norm = mid_term_features_norm[:, i_non_out_liers] # LDA dimensionality reduction: if lda_dim > 0: mt_win_ratio = int(round(mt_size / st_win)) mt_step_ratio = int(round(st_win / st_win)) mt_features_to_reduce = [] num_of_features = len(short_term_features) num_of_statistics = 2 # for i in range(numOfStatistics * numOfFeatures + 1): for i in range(num_of_statistics * num_of_features): mt_features_to_reduce.append([]) for i in range(num_of_features): # for each of the short-term features: cur_pos = 0 n = len(short_term_features[i]) while cur_pos < n: n1 = cur_pos n2 = cur_pos + mt_win_ratio if n2 > n: n2 = n cur_st_features = short_term_features[i][n1:n2] mt_features_to_reduce[i].append(np.mean(cur_st_features)) mt_features_to_reduce[i + num_of_features].append(np.std(cur_st_features)) cur_pos += mt_step_ratio mt_features_to_reduce = np.array(mt_features_to_reduce) mt_features_to_reduce2 = np.zeros((mt_features_to_reduce.shape[0] + len(class_names1) + len(class_names2), mt_features_to_reduce.shape[1])) for i in range(mt_features_to_reduce.shape[1]): cur_f1 = (mt_features_to_reduce[:, i] - mean1) / std1 cur_f2 = (mt_features_to_reduce[:, i] - mean2) / std2 result, p1 = aT.classifierWrapper(classifier1, "knn", cur_f1) result, p2 = aT.classifierWrapper(classifier2, "knn", cur_f2) mt_features_to_reduce2[0:mt_features_to_reduce.shape[0], i] = mt_features_to_reduce[:, i] mt_features_to_reduce2[mt_features_to_reduce.shape[0]:mt_features_to_reduce.shape[0] + len(class_names1), i] = p1 + 0.0001 mt_features_to_reduce2[mt_features_to_reduce.shape[0] + len(class_names1)::, i] = p2 + 0.0001 mt_features_to_reduce = mt_features_to_reduce2 mt_features_to_reduce = mt_features_to_reduce[i_features_select, :] # mtFeaturesToReduce += np.random.rand(mtFeaturesToReduce.shape[0], mtFeaturesToReduce.shape[1]) * 0.0000010 mt_features_to_reduce, mean, std = aT.normalizeFeatures([mt_features_to_reduce.T]) mt_features_to_reduce = mt_features_to_reduce[0].T # DistancesAll = np.sum(distance.squareform(distance.pdist(mtFeaturesToReduce.T)), axis=0) # MDistancesAll = np.mean(DistancesAll) # iNonOutLiers2 = np.nonzero(DistancesAll < 3.0*MDistancesAll)[0] # mtFeaturesToReduce = mtFeaturesToReduce[:, iNonOutLiers2] labels = np.zeros((mt_features_to_reduce.shape[1],)) lda_step = 1.0 lda_step_ratio = lda_step / st_win # print(LDAstep, LDAstepRatio for i in range(labels.shape[0]): labels[i] = int(i * st_win / lda_step_ratio) clf = sklearn.discriminant_analysis.LinearDiscriminantAnalysis(n_components=lda_dim) clf.fit(mt_features_to_reduce.T, labels) mid_term_features_norm = (clf.transform(mid_term_features_norm.T)).T if num_speaker <= 0: s_range = range(2, 10) else: s_range = [num_speaker] cls_all = [] sil_all = [] centers_all = [] # (26, 314) print('mid_term_features_norm', mid_term_features_norm.shape) for i_speakers in s_range: k_means = sklearn.cluster.KMeans(n_clusters=i_speakers) k_means.fit(mid_term_features_norm.T) cls = k_means.labels_ means = k_means.cluster_centers_ # Y = distance.squareform(distance.pdist(MidTermFeaturesNorm.T)) cls_all.append(cls) centers_all.append(means) sil_a = [] sil_b = [] for c in range(i_speakers): # for each speaker (i.e. for each extracted cluster) cluster_percent = np.nonzero(cls == c)[0].shape[0] / float(len(cls)) if cluster_percent < 0.020: sil_a.append(0.0) sil_b.append(0.0) else: mid_term_features_norm_temp = mid_term_features_norm[:, cls == c] # get subset of feature vectors # compute average distance between samples that belong to the cluster (a values) yt = distance.pdist(mid_term_features_norm_temp.T) sil_a.append(np.mean(yt) * cluster_percent) sil_bs = [] for c2 in range(i_speakers): # compute distances from samples of other clusters if c2 != c: cluster_percent2 = np.nonzero(cls == c2)[0].shape[0] / float(len(cls)) mid_term_features_norm_temp2 = mid_term_features_norm[:, cls == c2] yt = distance.cdist(mid_term_features_norm_temp.T, mid_term_features_norm_temp2.T) sil_bs.append(np.mean(yt) * (cluster_percent + cluster_percent2) / 2.0) sil_bs = np.array(sil_bs) # ... and keep the minimum value (i.e. the distance from the "nearest" cluster) sil_b.append(min(sil_bs)) sil_a = np.array(sil_a) sil_b = np.array(sil_b) sil = [] for c in range(i_speakers): # for each cluster (speaker) sil.append((sil_b[c] - sil_a[c]) / (max(sil_b[c], sil_a[c]) + 0.00001)) # compute silhouette sil_all.append(np.mean(sil)) # keep the AVERAGE SILLOUETTE # silAll = silAll * (1.0/(np.power(np.array(sRange),0.5))) imax = np.argmax(sil_all) # position of the maximum sillouette value n_speakers_final = s_range[imax] # optimal number of clusters # generate the final set of cluster labels # (important: need to retrieve the outlier windows: # this is achieved by giving them the value of their nearest non-outlier window) cls = np.zeros((num_of_windows,)) for i in range(num_of_windows): j = np.argmin(np.abs(i - i_non_out_liers)) cls[i] = cls_all[imax][j] # Post-process method 1: hmm smoothing for i in range(1): startprob, transmat, means, cov = trainHMM_computeStatistics(mid_term_features_norm_or, cls) hmm = hmmlearn.hmm.GaussianHMM(startprob.shape[0], "diag") # hmm training hmm.startprob_ = startprob hmm.transmat_ = transmat hmm.means_ = means hmm.covars_ = cov cls = hmm.predict(mid_term_features_norm_or.T) # Post-process method 2: median filtering: cls = scipy.signal.medfilt(cls, 13) cls = scipy.signal.medfilt(cls, 11) sil = sil_all[imax] # final sillouette class_names = ["speaker{0:d}".format(c) for c in range(n_speakers_final)] # load ground-truth if available gt_file = file_name.replace('.wav', '.segments') # open for annotated file if os.path.isfile(gt_file): # if groundturh exists seg_start, seg_end, seg_labels = readSegmentGT(gt_file) # read GT data flags_gt, class_names_gt = segs2flags(seg_start, seg_end, seg_labels, mt_step) # convert to flags x = np.arange(len(cls)) * mt_step + mt_step / 2.0 if plot: fig = plt.figure() if num_speaker > 0: ax1 = fig.add_subplot(111) else: ax1 = fig.add_subplot(211) ax1.set_yticks(np.array(range(len(class_names)))) ax1.axis((0, duration, -1, len(class_names))) ax1.set_yticklabels(class_names) ax1.plot(x, cls) if os.path.isfile(gt_file): if plot: ax1.plot(np.array(range(len(flags_gt))) * mt_step + mt_step / 2.0, flags_gt, 'r') purity_cluster_mean, purity_speaker_mean = evaluateSpeakerDiarization(cls, flags_gt) print("{0:.1f}\t{1:.1f}".format(100 * purity_cluster_mean, 100 * purity_speaker_mean)) if plot: plt.title("Cluster purity: {0:.1f}% - Speaker purity: {1:.1f}%".format(100 * purity_cluster_mean, 100 * purity_speaker_mean)) if plot: plt.xlabel("time (seconds)") # print(sRange, silAll) if num_speaker <= 0: plt.subplot(212) plt.plot(s_range, sil_all) plt.xlabel("number of clusters") plt.ylabel("average clustering's sillouette") plt.show() return x, cls
def mtFileClassification(input_file, model_name, model_type, plot_results=False, gt_file=""): ''' This function performs mid-term classification of an audio stream. Towards this end, supervised knowledge is used, i.e. a pre-trained classifier. ARGUMENTS: - input_file: path of the input WAV file - model_name: name of the classification model - model_type: svm or knn depending on the classifier type - plot_results: True if results are to be plotted using matplotlib along with a set of statistics RETURNS: - segs: a sequence of segment's endpoints: segs[i] is the endpoint of the i-th segment (in seconds) - classes: a sequence of class flags: class[i] is the class ID of the i-th segment ''' if not os.path.isfile(model_name): print("mtFileClassificationError: input model_type not found!") return (-1, -1, -1, -1) # Load classifier: if model_type == "knn": [classifier, MEAN, STD, class_names, mt_win, mt_step, st_win, st_step, compute_beat] = \ aT.load_model_knn(model_name) else: [ classifier, MEAN, STD, class_names, mt_win, mt_step, st_win, st_step, compute_beat ] = aT.load_model(model_name) if compute_beat: print("Model " + model_name + " contains long-term music features " "(beat etc) and cannot be used in " "segmentation") return (-1, -1, -1, -1) [fs, x] = audioBasicIO.readAudioFile(input_file) # load input file if fs == -1: # could not read file return (-1, -1, -1, -1) x = audioBasicIO.stereo2mono(x) # convert stereo (if) to mono duration = len(x) / fs # mid-term feature extraction: [mt_feats, _, _] = aF.mtFeatureExtraction(x, fs, mt_win * fs, mt_step * fs, round(fs * st_win), round(fs * st_step)) flags = [] Ps = [] flags_ind = [] for i in range( mt_feats.shape[1] ): # for each feature vector (i.e. for each fix-sized segment): cur_fv = (mt_feats[:, i] - MEAN) / STD # normalize current feature vector [res, P] = aT.classifierWrapper(classifier, model_type, cur_fv) # classify vector flags_ind.append(res) flags.append(class_names[int(res)]) # update class label matrix Ps.append(numpy.max(P)) # update probability matrix flags_ind = numpy.array(flags_ind) # 1-window smoothing for i in range(1, len(flags_ind) - 1): if flags_ind[i - 1] == flags_ind[i + 1]: flags_ind[i] = flags_ind[i + 1] # convert fix-sized flags to segments and classes (segs, classes) = flags2segs(flags, mt_step) segs[-1] = len(x) / float(fs) # Load grount-truth: if os.path.isfile(gt_file): [seg_start_gt, seg_end_gt, seg_l_gt] = readSegmentGT(gt_file) flags_gt, class_names_gt = segs2flags(seg_start_gt, seg_end_gt, seg_l_gt, mt_step) flags_ind_gt = [] for j, fl in enumerate(flags_gt): # "align" labels with GT if class_names_gt[flags_gt[j]] in class_names: flags_ind_gt.append( class_names.index(class_names_gt[flags_gt[j]])) else: flags_ind_gt.append(-1) flags_ind_gt = numpy.array(flags_ind_gt) cm = numpy.zeros((len(class_names_gt), len(class_names_gt))) for i in range(min(flags_ind.shape[0], flags_ind_gt.shape[0])): cm[int(flags_ind_gt[i]), int(flags_ind[i])] += 1 else: cm = [] flags_ind_gt = numpy.array([]) acc = plotSegmentationResults(flags_ind, flags_ind_gt, class_names, mt_step, not plot_results) if acc >= 0: print("Overall Accuracy: {0:.3f}".format(acc)) return (flags_ind, class_names_gt, acc, cm) else: return (flags_ind, class_names, acc, cm)
def recordAnalyzeAudio(duration, outputWavFile, midTermBufferSizeSec, modelName, modelType): ''' recordAnalyzeAudio(duration, outputWavFile, midTermBufferSizeSec, modelName, modelType) This function is used to record and analyze audio segments, in a fix window basis. ARGUMENTS: - duration total recording duration - outputWavFile path of the output WAV file - midTermBufferSizeSec (fix)segment length in seconds - modelName classification model name - modelType classification model type ''' if modelType == 'neuralnet': neuralNetClassidication(duration, midTermBufferSizeSec, modelName) else: if modelType == 'svm': [ Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT ] = aT.loadSVModel(modelName) elif modelType == 'knn': [ Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT ] = aT.loadKNNModel(modelName) else: Classifier = None inp = alsaaudio.PCM(alsaaudio.PCM_CAPTURE, alsaaudio.PCM_NONBLOCK) inp.setchannels(1) inp.setrate(Fs) inp.setformat(alsaaudio.PCM_FORMAT_S16_LE) inp.setperiodsize(512) midTermBufferSize = int(midTermBufferSizeSec * Fs) allData = [] midTermBuffer = [] curWindow = [] count = 0 # a sequence of samples # process a sequence # speed # emergency vehicle detection what have they done? emergency vehicle classification patents # plot features!!! # patents extracted! # latex literature review # writing a paper # while len(allData) < duration * Fs: # Read data from device l, data = inp.read() if l: for i in range(l): curWindow.append(audioop.getsample(data, 2, i)) if (len(curWindow) + len(midTermBuffer) > midTermBufferSize): samplesToCopyToMidBuffer = midTermBufferSize - len( midTermBuffer) else: samplesToCopyToMidBuffer = len(curWindow) midTermBuffer = midTermBuffer + curWindow[ 0:samplesToCopyToMidBuffer] del (curWindow[0:samplesToCopyToMidBuffer]) if len(midTermBuffer) == midTermBufferSize: count += 1 if Classifier != None: [mtFeatures, stFeatures ] = aF.mtFeatureExtraction(midTermBuffer, Fs, 2.0 * Fs, 2.0 * Fs, 0.020 * Fs, 0.020 * Fs) curFV = (mtFeatures[:, 0] - MEAN) / STD [result, P] = aT.classifierWrapper(Classifier, modelType, curFV) print classNames[int(result)] allData = allData + midTermBuffer plt.clf() plt.plot(midTermBuffer) plt.show(block=False) plt.draw() midTermBuffer = [] allDataArray = numpy.int16(allData) wavfile.write(outputWavFile, Fs, allDataArray)
def recordAnalyzeAudio(duration, outputWavFile, midTermBufferSizeSec, modelName, modelType): ''' recordAnalyzeAudio(duration, outputWavFile, midTermBufferSizeSec, modelName, modelType) This function is used to record and analyze audio segments, in a fix window basis. ARGUMENTS: - duration total recording duration - outputWavFile path of the output WAV file - midTermBufferSizeSec (fix)segment length in seconds - modelName classification model name - modelType classification model type ''' if modelType=='svm': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, compute_beat] = aT.load_model(modelName) elif modelType=='knn': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, compute_beat] = aT.load_model_knn(modelName) else: Classifier = None inp = alsaaudio.PCM(alsaaudio.PCM_CAPTURE, alsaaudio.PCM_NONBLOCK) inp.setchannels(1) inp.setrate(Fs) inp.setformat(alsaaudio.PCM_FORMAT_S16_LE) inp.setperiodsize(512) midTermBufferSize = int(midTermBufferSizeSec * Fs) allData = [] midTermBuffer = [] curWindow = [] count = 0 while len(allData)<duration*Fs: # Read data from device l,data = inp.read() if l: for i in range(l): curWindow.append(audioop.getsample(data, 2, i)) if (len(curWindow)+len(midTermBuffer)>midTermBufferSize): samplesToCopyToMidBuffer = midTermBufferSize - len(midTermBuffer) else: samplesToCopyToMidBuffer = len(curWindow) midTermBuffer = midTermBuffer + curWindow[0:samplesToCopyToMidBuffer]; del(curWindow[0:samplesToCopyToMidBuffer]) if len(midTermBuffer) == midTermBufferSize: count += 1 if Classifier!=None: [mtFeatures, stFeatures, _] = aF.mtFeatureExtraction(midTermBuffer, Fs, 2.0*Fs, 2.0*Fs, 0.020*Fs, 0.020*Fs) curFV = (mtFeatures[:,0] - MEAN) / STD; [result, P] = aT.classifierWrapper(Classifier, modelType, curFV) print classNames[int(result)] allData = allData + midTermBuffer plt.clf() plt.plot(midTermBuffer) plt.show(block = False) plt.draw() midTermBuffer = [] allDataArray = numpy.int16(allData) wavfile.write(outputWavFile, Fs, allDataArray)
def speakerDiarization(fileName, numOfSpeakers, mtSize=2.0, mtStep=0.2, stWin=0.05, LDAdim=35, PLOT=False): ''' ARGUMENTS: - fileName: the name of the WAV file to be analyzed - numOfSpeakers the number of speakers (clusters) in the recording (<=0 for unknown) - mtSize (opt) mid-term window size - mtStep (opt) mid-term window step - stWin (opt) short-term window size - LDAdim (opt) LDA dimension (0 for no LDA) - PLOT (opt) 0 for not plotting the results 1 for plottingy ''' [Fs, x] = audioBasicIO.readAudioFile(fileName) x = audioBasicIO.stereo2mono(x) Duration = len(x) / Fs [ Classifier1, MEAN1, STD1, classNames1, mtWin1, mtStep1, stWin1, stStep1, computeBEAT1 ] = aT.loadKNNModel(os.path.join("data", "knnSpeakerAll")) [ Classifier2, MEAN2, STD2, classNames2, mtWin2, mtStep2, stWin2, stStep2, computeBEAT2 ] = aT.loadKNNModel(os.path.join("data", "knnSpeakerFemaleMale")) [MidTermFeatures, ShortTermFeatures] = aF.mtFeatureExtraction(x, Fs, mtSize * Fs, mtStep * Fs, round(Fs * stWin), round(Fs * stWin * 0.5)) MidTermFeatures2 = numpy.zeros( (MidTermFeatures.shape[0] + len(classNames1) + len(classNames2), MidTermFeatures.shape[1])) for i in range(MidTermFeatures.shape[1]): curF1 = (MidTermFeatures[:, i] - MEAN1) / STD1 curF2 = (MidTermFeatures[:, i] - MEAN2) / STD2 [Result, P1] = aT.classifierWrapper(Classifier1, "knn", curF1) [Result, P2] = aT.classifierWrapper(Classifier2, "knn", curF2) MidTermFeatures2[0:MidTermFeatures.shape[0], i] = MidTermFeatures[:, i] MidTermFeatures2[MidTermFeatures.shape[0]:MidTermFeatures.shape[0] + len(classNames1), i] = P1 + 0.0001 MidTermFeatures2[MidTermFeatures.shape[0] + len(classNames1)::, i] = P2 + 0.0001 MidTermFeatures = MidTermFeatures2 # TODO # SELECT FEATURES: #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20]; # SET 0A #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 99,100]; # SET 0B #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96, # 97,98, 99,100]; # SET 0C iFeaturesSelect = [ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53 ] # SET 1A #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 1B #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 1C #iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53]; # SET 2A #iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 2B #iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 2C #iFeaturesSelect = range(100); # SET 3 #MidTermFeatures += numpy.random.rand(MidTermFeatures.shape[0], MidTermFeatures.shape[1]) * 0.000000010 MidTermFeatures = MidTermFeatures[iFeaturesSelect, :] (MidTermFeaturesNorm, MEAN, STD) = aT.normalizeFeatures([MidTermFeatures.T]) MidTermFeaturesNorm = MidTermFeaturesNorm[0].T numOfWindows = MidTermFeatures.shape[1] # remove outliers: DistancesAll = numpy.sum(distance.squareform( distance.pdist(MidTermFeaturesNorm.T)), axis=0) MDistancesAll = numpy.mean(DistancesAll) iNonOutLiers = numpy.nonzero(DistancesAll < 1.2 * MDistancesAll)[0] # TODO: Combine energy threshold for outlier removal: #EnergyMin = numpy.min(MidTermFeatures[1,:]) #EnergyMean = numpy.mean(MidTermFeatures[1,:]) #Thres = (1.5*EnergyMin + 0.5*EnergyMean) / 2.0 #iNonOutLiers = numpy.nonzero(MidTermFeatures[1,:] > Thres)[0] #print iNonOutLiers perOutLier = (100.0 * (numOfWindows - iNonOutLiers.shape[0])) / numOfWindows MidTermFeaturesNormOr = MidTermFeaturesNorm MidTermFeaturesNorm = MidTermFeaturesNorm[:, iNonOutLiers] # LDA dimensionality reduction: if LDAdim > 0: #[mtFeaturesToReduce, _] = aF.mtFeatureExtraction(x, Fs, mtSize * Fs, stWin * Fs, round(Fs*stWin), round(Fs*stWin)); # extract mid-term features with minimum step: mtWinRatio = int(round(mtSize / stWin)) mtStepRatio = int(round(stWin / stWin)) mtFeaturesToReduce = [] numOfFeatures = len(ShortTermFeatures) numOfStatistics = 2 #for i in range(numOfStatistics * numOfFeatures + 1): for i in range(numOfStatistics * numOfFeatures): mtFeaturesToReduce.append([]) for i in range(numOfFeatures): # for each of the short-term features: curPos = 0 N = len(ShortTermFeatures[i]) while (curPos < N): N1 = curPos N2 = curPos + mtWinRatio if N2 > N: N2 = N curStFeatures = ShortTermFeatures[i][N1:N2] mtFeaturesToReduce[i].append(numpy.mean(curStFeatures)) mtFeaturesToReduce[i + numOfFeatures].append( numpy.std(curStFeatures)) curPos += mtStepRatio mtFeaturesToReduce = numpy.array(mtFeaturesToReduce) mtFeaturesToReduce2 = numpy.zeros( (mtFeaturesToReduce.shape[0] + len(classNames1) + len(classNames2), mtFeaturesToReduce.shape[1])) for i in range(mtFeaturesToReduce.shape[1]): curF1 = (mtFeaturesToReduce[:, i] - MEAN1) / STD1 curF2 = (mtFeaturesToReduce[:, i] - MEAN2) / STD2 [Result, P1] = aT.classifierWrapper(Classifier1, "knn", curF1) [Result, P2] = aT.classifierWrapper(Classifier2, "knn", curF2) mtFeaturesToReduce2[0:mtFeaturesToReduce.shape[0], i] = mtFeaturesToReduce[:, i] mtFeaturesToReduce2[ mtFeaturesToReduce.shape[0]:mtFeaturesToReduce.shape[0] + len(classNames1), i] = P1 + 0.0001 mtFeaturesToReduce2[mtFeaturesToReduce.shape[0] + len(classNames1)::, i] = P2 + 0.0001 mtFeaturesToReduce = mtFeaturesToReduce2 mtFeaturesToReduce = mtFeaturesToReduce[iFeaturesSelect, :] #mtFeaturesToReduce += numpy.random.rand(mtFeaturesToReduce.shape[0], mtFeaturesToReduce.shape[1]) * 0.0000010 (mtFeaturesToReduce, MEAN, STD) = aT.normalizeFeatures([mtFeaturesToReduce.T]) mtFeaturesToReduce = mtFeaturesToReduce[0].T #DistancesAll = numpy.sum(distance.squareform(distance.pdist(mtFeaturesToReduce.T)), axis=0) #MDistancesAll = numpy.mean(DistancesAll) #iNonOutLiers2 = numpy.nonzero(DistancesAll < 3.0*MDistancesAll)[0] #mtFeaturesToReduce = mtFeaturesToReduce[:, iNonOutLiers2] Labels = numpy.zeros((mtFeaturesToReduce.shape[1], )) LDAstep = 1.0 LDAstepRatio = LDAstep / stWin #print LDAstep, LDAstepRatio for i in range(Labels.shape[0]): Labels[i] = int(i * stWin / LDAstepRatio) clf = sklearn.discriminant_analysis.LinearDiscriminantAnalysis( n_components=LDAdim) clf.fit(mtFeaturesToReduce.T, Labels) MidTermFeaturesNorm = (clf.transform(MidTermFeaturesNorm.T)).T if numOfSpeakers <= 0: sRange = range(2, 10) else: sRange = [numOfSpeakers] clsAll = [] silAll = [] centersAll = [] for iSpeakers in sRange: k_means = sklearn.cluster.KMeans(n_clusters=iSpeakers) k_means.fit(MidTermFeaturesNorm.T) cls = k_means.labels_ means = k_means.cluster_centers_ # Y = distance.squareform(distance.pdist(MidTermFeaturesNorm.T)) clsAll.append(cls) centersAll.append(means) silA = [] silB = [] for c in range(iSpeakers ): # for each speaker (i.e. for each extracted cluster) clusterPerCent = numpy.nonzero(cls == c)[0].shape[0] / float( len(cls)) if clusterPerCent < 0.020: silA.append(0.0) silB.append(0.0) else: MidTermFeaturesNormTemp = MidTermFeaturesNorm[:, cls == c] # get subset of feature vectors Yt = distance.pdist( MidTermFeaturesNormTemp.T ) # compute average distance between samples that belong to the cluster (a values) silA.append(numpy.mean(Yt) * clusterPerCent) silBs = [] for c2 in range( iSpeakers ): # compute distances from samples of other clusters if c2 != c: clusterPerCent2 = numpy.nonzero( cls == c2)[0].shape[0] / float(len(cls)) MidTermFeaturesNormTemp2 = MidTermFeaturesNorm[:, cls == c2] Yt = distance.cdist(MidTermFeaturesNormTemp.T, MidTermFeaturesNormTemp2.T) silBs.append( numpy.mean(Yt) * (clusterPerCent + clusterPerCent2) / 2.0) silBs = numpy.array(silBs) silB.append( min(silBs) ) # ... and keep the minimum value (i.e. the distance from the "nearest" cluster) silA = numpy.array(silA) silB = numpy.array(silB) sil = [] for c in range(iSpeakers): # for each cluster (speaker) sil.append((silB[c] - silA[c]) / (max(silB[c], silA[c]) + 0.00001)) # compute silhouette silAll.append(numpy.mean(sil)) # keep the AVERAGE SILLOUETTE #silAll = silAll * (1.0/(numpy.power(numpy.array(sRange),0.5))) imax = numpy.argmax(silAll) # position of the maximum sillouette value nSpeakersFinal = sRange[imax] # optimal number of clusters # generate the final set of cluster labels # (important: need to retrieve the outlier windows: this is achieved by giving them the value of their nearest non-outlier window) cls = numpy.zeros((numOfWindows, )) for i in range(numOfWindows): j = numpy.argmin(numpy.abs(i - iNonOutLiers)) cls[i] = clsAll[imax][j] # Post-process method 1: hmm smoothing for i in range(1): startprob, transmat, means, cov = trainHMM_computeStatistics( MidTermFeaturesNormOr, cls) hmm = hmmlearn.hmm.GaussianHMM(startprob.shape[0], "diag") # hmm training hmm.startprob_ = startprob hmm.transmat_ = transmat hmm.means_ = means hmm.covars_ = cov cls = hmm.predict(MidTermFeaturesNormOr.T) # Post-process method 2: median filtering: cls = scipy.signal.medfilt(cls, 13) cls = scipy.signal.medfilt(cls, 11) sil = silAll[imax] # final sillouette classNames = ["speaker{0:d}".format(c) for c in range(nSpeakersFinal)] #debug segslist = [list() for x in range(numOfSpeakers)] start = 0 for i in range(0, len(cls) - 1): if cls[i] != cls[i + 1]: segTemp = dict() segTemp['start'] = start segTemp['end'] = i * mtStep + mtStep speakerID = int(cls[i]) print speakerID, segTemp segslist[speakerID].append(segTemp) start = segTemp['end'] segTemp = dict() segTemp['start'] = start segTemp['end'] = (len(cls) - 1) * mtStep + mtStep speakerID = int(cls[-1]) print speakerID print segTemp segslist[speakerID].append(segTemp) print segslist conversation = list() sound = AudioSegment.from_file(fileName) for speakerID, speaker in enumerate(segslist): for segID, seg in enumerate(speaker): chunk = sound[seg['start'] * 1000:seg['end'] * 1000] output_name = 'speaker{}_{}.wav'.format(speakerID, segID) chunk.export(output_name, format="wav") r = sr.Recognizer() with sr.AudioFile(output_name) as source: audio = r.record(source) # read the entire audio file # recognize speech using Sphinx try: print("Sphinx thinks you said: " + r.recognize_sphinx(audio)) content = dict() content['text'] = r.recognize_sphinx(audio) content['speakerID'] = speakerID content['start'] = seg['start'] conversation.append(content) except sr.UnknownValueError: print("Sphinx could not understand audio") except sr.RequestError as e: print("Sphinx error; {0}".format(e)) conversation.sort(key=operator.itemgetter('start')) text_file = open('text.txt', 'w') for c in conversation: line = 'Speaker{}: {}\n'.format(c['speakerID'], c['text']) text_file.write(line) print conversation return cls
def speakerDiarization(fileName, numOfSpeakers, mtSize=2.0, mtStep=0.2, stWin=0.05, LDAdim=35, PLOT=False): ''' ARGUMENTS: - fileName: the name of the WAV file to be analyzed - numOfSpeakers the number of speakers (clusters) in the recording (<=0 for unknown) - mtSize (opt) mid-term window size - mtStep (opt) mid-term window step - stWin (opt) short-term window size - LDAdim (opt) LDA dimension (0 for no LDA) - PLOT (opt) 0 for not plotting the results 1 for plottingy ''' [Fs, x] = audioBasicIO.readAudioFile(fileName) x = audioBasicIO.stereo2mono(x) Duration = len(x) / Fs [Classifier1, MEAN1, STD1, classNames1, mtWin1, mtStep1, stWin1, stStep1, computeBEAT1] = aT.loadKNNModel( "data/knnSpeakerAll") [Classifier2, MEAN2, STD2, classNames2, mtWin2, mtStep2, stWin2, stStep2, computeBEAT2] = aT.loadKNNModel( "data/knnSpeakerFemaleMale") [MidTermFeatures, ShortTermFeatures] = aF.mtFeatureExtraction(x, Fs, mtSize * Fs, mtStep * Fs, round(Fs * stWin), round(Fs * stWin * 0.5)) MidTermFeatures2 = numpy.zeros( (MidTermFeatures.shape[0] + len(classNames1) + len(classNames2), MidTermFeatures.shape[1])) for i in range(MidTermFeatures.shape[1]): curF1 = (MidTermFeatures[:, i] - MEAN1) / STD1 curF2 = (MidTermFeatures[:, i] - MEAN2) / STD2 [Result, P1] = aT.classifierWrapper(Classifier1, "knn", curF1) [Result, P2] = aT.classifierWrapper(Classifier2, "knn", curF2) MidTermFeatures2[0:MidTermFeatures.shape[0], i] = MidTermFeatures[:, i] MidTermFeatures2[MidTermFeatures.shape[0]:MidTermFeatures.shape[0] + len(classNames1), i] = P1 + 0.0001 MidTermFeatures2[MidTermFeatures.shape[0] + len(classNames1)::, i] = P2 + 0.0001 MidTermFeatures = MidTermFeatures2 # TODO # SELECT FEATURES: # iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20]; # SET 0A # iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 99,100]; # SET 0B # iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96, # 97,98, 99,100]; # SET 0C iFeaturesSelect = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] # SET 1A # iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 1B # iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 1C # iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53]; # SET 2A # iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 2B # iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 2C # iFeaturesSelect = range(100); # SET 3 # MidTermFeatures += numpy.random.rand(MidTermFeatures.shape[0], MidTermFeatures.shape[1]) * 0.000000010 MidTermFeatures = MidTermFeatures[iFeaturesSelect, :] (MidTermFeaturesNorm, MEAN, STD) = aT.normalizeFeatures([MidTermFeatures.T]) MidTermFeaturesNorm = MidTermFeaturesNorm[0].T numOfWindows = MidTermFeatures.shape[1] # remove outliers: DistancesAll = numpy.sum(distance.squareform(distance.pdist(MidTermFeaturesNorm.T)), axis=0) MDistancesAll = numpy.mean(DistancesAll) iNonOutLiers = numpy.nonzero(DistancesAll < 1.2 * MDistancesAll)[0] # TODO: Combine energy threshold for outlier removal: # EnergyMin = numpy.min(MidTermFeatures[1,:]) # EnergyMean = numpy.mean(MidTermFeatures[1,:]) # Thres = (1.5*EnergyMin + 0.5*EnergyMean) / 2.0 # iNonOutLiers = numpy.nonzero(MidTermFeatures[1,:] > Thres)[0] # print iNonOutLiers perOutLier = (100.0 * (numOfWindows - iNonOutLiers.shape[0])) / numOfWindows MidTermFeaturesNormOr = MidTermFeaturesNorm MidTermFeaturesNorm = MidTermFeaturesNorm[:, iNonOutLiers] # LDA dimensionality reduction: if LDAdim > 0: # [mtFeaturesToReduce, _] = aF.mtFeatureExtraction(x, Fs, mtSize * Fs, stWin * Fs, round(Fs*stWin), round(Fs*stWin)); # extract mid-term features with minimum step: mtWinRatio = int(round(mtSize / stWin)) mtStepRatio = int(round(stWin / stWin)) mtFeaturesToReduce = [] numOfFeatures = len(ShortTermFeatures) numOfStatistics = 2 # for i in range(numOfStatistics * numOfFeatures + 1): for i in range(numOfStatistics * numOfFeatures): mtFeaturesToReduce.append([]) for i in range(numOfFeatures): # for each of the short-term features: curPos = 0 N = len(ShortTermFeatures[i]) while (curPos < N): N1 = curPos N2 = curPos + mtWinRatio if N2 > N: N2 = N curStFeatures = ShortTermFeatures[i][N1:N2] mtFeaturesToReduce[i].append(numpy.mean(curStFeatures)) mtFeaturesToReduce[i + numOfFeatures].append(numpy.std(curStFeatures)) curPos += mtStepRatio mtFeaturesToReduce = numpy.array(mtFeaturesToReduce) mtFeaturesToReduce2 = numpy.zeros( (mtFeaturesToReduce.shape[0] + len(classNames1) + len(classNames2), mtFeaturesToReduce.shape[1])) for i in range(mtFeaturesToReduce.shape[1]): curF1 = (mtFeaturesToReduce[:, i] - MEAN1) / STD1 curF2 = (mtFeaturesToReduce[:, i] - MEAN2) / STD2 [Result, P1] = aT.classifierWrapper(Classifier1, "knn", curF1) [Result, P2] = aT.classifierWrapper(Classifier2, "knn", curF2) mtFeaturesToReduce2[0:mtFeaturesToReduce.shape[0], i] = mtFeaturesToReduce[:, i] mtFeaturesToReduce2[mtFeaturesToReduce.shape[0]:mtFeaturesToReduce.shape[0] + len(classNames1), i] = P1 + 0.0001 mtFeaturesToReduce2[mtFeaturesToReduce.shape[0] + len(classNames1)::, i] = P2 + 0.0001 mtFeaturesToReduce = mtFeaturesToReduce2 mtFeaturesToReduce = mtFeaturesToReduce[iFeaturesSelect, :] # mtFeaturesToReduce += numpy.random.rand(mtFeaturesToReduce.shape[0], mtFeaturesToReduce.shape[1]) * 0.0000010 (mtFeaturesToReduce, MEAN, STD) = aT.normalizeFeatures([mtFeaturesToReduce.T]) mtFeaturesToReduce = mtFeaturesToReduce[0].T # DistancesAll = numpy.sum(distance.squareform(distance.pdist(mtFeaturesToReduce.T)), axis=0) # MDistancesAll = numpy.mean(DistancesAll) # iNonOutLiers2 = numpy.nonzero(DistancesAll < 3.0*MDistancesAll)[0] # mtFeaturesToReduce = mtFeaturesToReduce[:, iNonOutLiers2] Labels = numpy.zeros((mtFeaturesToReduce.shape[1],)) LDAstep = 1.0 LDAstepRatio = LDAstep / stWin # print LDAstep, LDAstepRatio for i in range(Labels.shape[0]): Labels[i] = int(i * stWin / LDAstepRatio); clf = LDA(n_components=LDAdim) clf.fit(mtFeaturesToReduce.T, Labels, tol=0.000001) MidTermFeaturesNorm = (clf.transform(MidTermFeaturesNorm.T)).T if numOfSpeakers <= 0: sRange = range(2, 10) else: sRange = [numOfSpeakers] clsAll = [] silAll = [] centersAll = [] for iSpeakers in sRange: cls, means, steps = mlpy.kmeans(MidTermFeaturesNorm.T, k=iSpeakers, plus=True) # perform k-means clustering # YDist = distance.pdist(MidTermFeaturesNorm.T, metric='euclidean') # print distance.squareform(YDist).shape # hc = mlpy.HCluster() # hc.linkage(YDist) # cls = hc.cut(14.5) # print cls # Y = distance.squareform(distance.pdist(MidTermFeaturesNorm.T)) clsAll.append(cls) centersAll.append(means) silA = []; silB = [] for c in range(iSpeakers): # for each speaker (i.e. for each extracted cluster) clusterPerCent = numpy.nonzero(cls == c)[0].shape[0] / float(len(cls)) if clusterPerCent < 0.020: silA.append(0.0) silB.append(0.0) else: MidTermFeaturesNormTemp = MidTermFeaturesNorm[:, cls == c] # get subset of feature vectors Yt = distance.pdist( MidTermFeaturesNormTemp.T) # compute average distance between samples that belong to the cluster (a values) silA.append(numpy.mean(Yt) * clusterPerCent) silBs = [] for c2 in range(iSpeakers): # compute distances from samples of other clusters if c2 != c: clusterPerCent2 = numpy.nonzero(cls == c2)[0].shape[0] / float(len(cls)) MidTermFeaturesNormTemp2 = MidTermFeaturesNorm[:, cls == c2] Yt = distance.cdist(MidTermFeaturesNormTemp.T, MidTermFeaturesNormTemp2.T) silBs.append(numpy.mean(Yt) * (clusterPerCent + clusterPerCent2) / 2.0) silBs = numpy.array(silBs) silB.append(min(silBs)) # ... and keep the minimum value (i.e. the distance from the "nearest" cluster) silA = numpy.array(silA) silB = numpy.array(silB) sil = [] for c in range(iSpeakers): # for each cluster (speaker) sil.append((silB[c] - silA[c]) / (max(silB[c], silA[c]) + 0.00001)) # compute silhouette silAll.append(numpy.mean(sil)) # keep the AVERAGE SILLOUETTE # silAll = silAll * (1.0/(numpy.power(numpy.array(sRange),0.5))) imax = numpy.argmax(silAll) # position of the maximum sillouette value nSpeakersFinal = sRange[imax] # optimal number of clusters return nSpeakersFinal