def test_fill_cpu_ram(self, timit_like_path, timit_like_datapath, timit_like_gtpath): """Test the fill cpu rarm functionality.""" gt_getter = TimitGroundTruth(timit_like_path, timit_like_datapath, timit_like_gtpath) audio_extractor = WindowedAudio(1024, 512, 16000, normalize=True, padding=True) mfcc_extractor = WindowedMFCC(1024, 512, 16000, n_mfcc=32, normalize=True) sampler = WindowedSegmentSampler([audio_extractor, mfcc_extractor], gt_getter, 8000) try: get_dataloader_fixed_size(sampler, 32, "train") get_dataloader_fixed_size(sampler, 16, "test") except Exception as exception: pytest.fail(f"Unexpected error: {exception}")
"""Library usage to create pytorch dataloaders with timit dataset.""" from os.path import join from pathlib import Path from audio_loader.features.raw_audio import WindowedAudio from audio_loader.features.mfcc import WindowedMFCC from audio_loader.ground_truth.timit import TimitGroundTruth from audio_loader.samplers.windowed_segments import WindowedSegmentSampler from audio_loader.dl_frontends.pytorch.fill_ram import get_dataloader_fixed_size timit_gt = TimitGroundTruth( join(Path.home(), "data/darpa-timit-acousticphonetic-continuous-speech")) print("groundtruth loaded") raw_feature_processor = WindowedAudio(1024, 512, 16000) raw_sampler = WindowedSegmentSampler([raw_feature_processor], timit_gt, 8000, overlap=0.5) raw_train_dataloader = get_dataloader_fixed_size(raw_sampler, 32, "train") raw_test_dataloader = get_dataloader_fixed_size(raw_sampler, 32, "test") print("raw audio done") mfcc_feature_processor = WindowedMFCC(1024, 512, 16000, 20) mfcc_sampler = WindowedSegmentSampler([mfcc_feature_processor], timit_gt, 8000, overlap=0.5) mfcc_train_dataloader = get_dataloader_fixed_size(mfcc_sampler, 32, "train")