示例#1
0
class VariableStepAudioFeatureModelTest(unittest.TestCase):
    def setUp(self):
        self.audio_file_meta = AudioFileMeta(file_name="file.wav",
                                             channels_count=2,
                                             sample_rate=44100,
                                             file_size_bytes=88200)
        self.feature_values = [1.0, 2.0, 3.0, 4.0]
        self.feature_steps = [
            StepFeature(v,
                        values=numpy.asanyarray(self.feature_values),
                        label="text_{}".format(v)) for v in self.feature_values
        ]
        self.variable_step_feature = VampyVariableStepFeature(
            task_id="0f961f20-b036-5740-b526-013523dd88c7",
            step_features=self.feature_steps)

    def test_should_serialize_and_deserialize_feature(self):
        serialized = self.variable_step_feature.to_serializable()
        deserialized = VampyVariableStepFeature.from_serializable(serialized)
        assert_that(deserialized).is_not_none().is_equal_to(
            self.variable_step_feature)

    def test_should_serialized_to_json(self):
        as_json = json.dumps(self.variable_step_feature.to_serializable())
        assert_that(as_json).is_not_none().is_not_empty()
示例#2
0
 def setUp(self):
     self.audio_file_meta = AudioFileMeta(file_name="file.wav",
                                          channels_count=2,
                                          sample_rate=44100,
                                          file_size_bytes=88200)
     self.feature_values = [1.0, 2.0, 3.0, 4.0]
     self.feature_steps = [
         StepFeature(v,
                     values=numpy.asanyarray(self.feature_values),
                     label="text_{}".format(v)) for v in self.feature_values
     ]
     self.variable_step_feature = VampyVariableStepFeature(
         task_id="0f961f20-b036-5740-b526-013523dd88c7",
         step_features=self.feature_steps)
示例#3
0
def build_feature_object(task_id: str, extracted_data: Dict[str, Any]) -> VampyFeatureAbstraction:
    data_type = list(extracted_data.keys())[0]
    if data_type == "list":
        value_list = [StepFeature(f.get("timestamp").to_float(), f.get("values"), f.get("label") or None)
                      for f in extracted_data["list"]]
        return VampyVariableStepFeature(task_id, step_features=value_list)
    elif data_type in ("vector", "matrix"):
        data = extracted_data.get("vector") or extracted_data.get("matrix")
        return VampyConstantStepFeature(task_id, time_step=data[0].to_float(), matrix=data[1])  # type: ignore
    else:
        raise NotImplementedError("Can not recognize feature type: {}".format(extracted_data.keys()))
 def setUp(self):
     self.audio_meta = CompressedAudioFileMeta("some_name.mp3", 1024, 1, 44100, length_sec=4., bit_rate_kbps=128)
     self.single_dimensional_feature = array([0.38888031], dtype=float32)
     self.two_dimensional_feature = array([0.38888031, 0.3144314, 0.46564227, 0.31890243, 0.22512659], dtype=float32)
     self.three_dimensional_feature = array([[0.38888031, 0.3144314],
                                             [0.46564227, 0.31890243],
                                             [0.22512659, 0.31890243]], dtype=float32)
     self.constant_step_2d_feature = VampyConstantStepFeature("", time_step=0.1, matrix=self.two_dimensional_feature)
     self.constant_step_3d_feature = VampyConstantStepFeature("", time_step=0.1,
                                                              matrix=self.three_dimensional_feature)
     self.variable_step_single_value_feature = VampyVariableStepFeature("", [StepFeature(timestamp=0.0,
                                                                                         values=array([519.51]))])
     self.constant_step_single_value_feature = VampyConstantStepFeature("", time_step=0.1,
                                                                        matrix=self.single_dimensional_feature)
 def test_should_transform_segment_based_simple_variable_feature_into_ratio_metric(self):
     segment_share_ratio = SegmentLabelShareRatioTransformation(audio_meta=self.audio_meta, label="b")
     segment_variable_step_feature = VampyVariableStepFeature("task_id", [StepFeature(timestamp=0.0,
                                                                                      values=array([0]),
                                                                                      label="a"),
                                                                          StepFeature(timestamp=1.0,
                                                                                      values=array([1]),
                                                                                      label="b"),
                                                                          StepFeature(timestamp=2.0,
                                                                                      values=array([0]),
                                                                                      label="a"),
                                                                          StepFeature(timestamp=3.0,
                                                                                      values=array([1]),
                                                                                      label="b")
                                                                          ])
     actual_metric_vector = segment_share_ratio.call(segment_variable_step_feature)
     assert_that(actual_metric_vector).is_length(2).contains(0.25)
示例#6
0
 def test_should_serialize_and_deserialize_feature(self):
     serialized = self.variable_step_feature.to_serializable()
     deserialized = VampyVariableStepFeature.from_serializable(serialized)
     assert_that(deserialized).is_not_none().is_equal_to(
         self.variable_step_feature)
示例#7
0
 def _call_on_variable_step(
         self, feature: VampyVariableStepFeature) -> numpy.ndarray:
     return feature.values()
示例#8
0
def from_compressed_feature(comp_feat: CompressedFeatureDTO) -> Union[VampyConstantStepFeature, VampyVariableStepFeature]:
    decompressed_feature = decompress_model(comp_feat.compression, comp_feat.data)
    if "time_step" in decompressed_feature.keys():
        return VampyConstantStepFeature.from_serializable(decompressed_feature)
    else:
        return VampyVariableStepFeature.from_serializable(decompressed_feature)