示例#1
0
    def __getitem__(self, index):
        HR_path, LR_path = None, None
        scale = self.opt['scale']
        HR_size = self.opt['HR_size']
        
        #v
        if self.opt['rand_flip_LR_HR'] and self.LR_scale and self.opt['phase'] == 'train': 
            LRHRchance = random.uniform(0, 1)
            if self.opt['flip_chance']:
                flip_chance = self.opt['flip_chance']
            else:
                flip_chance = 0.05
            #print("Random Flip Enabled")
        else:
            LRHRchance = 0.
            flip_chance = 0.
            #print("No Random Flip")

        # get HR image
        if LRHRchance < (1- flip_chance):
            HR_path = self.paths_HR[index]
            #print("HR kept")
        else:
            HR_path = self.paths_LR[index]
            #print("HR flipped")
        #v
        
        img_HR = util.read_img(self.HR_env, HR_path)
        # modcrop in the validation / test phase
        if self.opt['phase'] != 'train':
            img_HR = util.modcrop(img_HR, scale)
        # change color space if necessary
        if self.opt['color']:
            img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0]
        
        #v
        if self.HR_crop and (self.HR_rrot != True):
            crop_size = (HR_size, HR_size)
            img_HR, _ = augmentations.random_resize_img(img_HR, crop_size)
        elif self.HR_rrot and (self.HR_crop != True):
            img_HR, _ = augmentations.random_rotate(img_HR)
        elif self.HR_crop and self.HR_rrot:
            if np.random.rand() > 0.5:
                crop_size = (HR_size, HR_size)
                img_HR, _ = augmentations.random_resize_img(img_HR, crop_size)
            else:
                img_HR, _ = augmentations.random_rotate(img_HR)
        #v
            
        #v
        if self.HR_noise:
            img_HR, hr_noise_algo = augmentations.noise_img(img_HR, self.hr_noise_types)
        #v

        # get LR image
        if self.paths_LR:
            if self.HR_crop or self.HR_rrot: #v
                img_LR = img_HR
            else:
                if LRHRchance < (1- flip_chance):
                    LR_path = self.paths_LR[index]
                    #print("LR kept")
                else:
                    LR_path = self.paths_HR[index]
                    #print("LR flipped")
                img_LR = util.read_img(self.LR_env, LR_path)
            
            #"""
            #v scale 
            if self.LR_scale:
                img_LR, scale_interpol_algo = augmentations.scale_img(img_LR, scale)
            #"""
            
            #"""
            #v blur 
            if self.LR_blur:
                img_LR, blur_algo, blur_kernel_size = augmentations.blur_img(img_LR, self.blur_algos) 
            #"""
            
            #"""
            #v noise
            if self.LR_noise:
                img_LR, noise_algo = augmentations.noise_img(img_LR, self.noise_types)
            if self.LR_noise2:
                img_LR, noise_algo2 = augmentations.noise_img(img_LR, self.noise_types2)
            #"""
            
            #"""
            #v LR cutout / LR random erasing
            if self.LR_cutout and (self.LR_erasing  != True):
                img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2)
            elif self.LR_erasing and (self.LR_cutout  != True): #only do cutout or erasing, not both
                img_LR = augmentations.random_erasing(img_LR)
            elif self.LR_cutout and self.LR_erasing:
                if np.random.rand() > 0.5:
                    img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2, p=0.5)
                else:
                    img_LR = augmentations.random_erasing(img_LR, p=0.5, modes=[3])                
            #"""
            
        else:  # down-sampling on-the-fly
            # randomly scale during training
            if self.opt['phase'] == 'train':
                random_scale = random.choice(self.random_scale_list)
                H_s, W_s, _ = img_HR.shape

                def _mod(n, random_scale, scale, thres):
                    rlt = int(n * random_scale)
                    rlt = (rlt // scale) * scale
                    return thres if rlt < thres else rlt

                H_s = _mod(H_s, random_scale, scale, HR_size)
                W_s = _mod(W_s, random_scale, scale, HR_size)
                img_HR = cv2.resize(np.copy(img_HR), (W_s, H_s), interpolation=cv2.INTER_LINEAR)
                # force to 3 channels
                if img_HR.ndim == 2:
                    img_HR = cv2.cvtColor(img_HR, cv2.COLOR_GRAY2BGR)

            H, W, _ = img_HR.shape
            # using matlab imresize
            img_LR = util.imresize_np(img_HR, 1 / scale, True)
            if img_LR.ndim == 2:
                img_LR = np.expand_dims(img_LR, axis=2)

        if self.opt['phase'] == 'train':
            # if the image size is too small
            H, W, _ = img_HR.shape
            if H < HR_size or W < HR_size:
                img_HR = cv2.resize(
                    np.copy(img_HR), (HR_size, HR_size), interpolation=cv2.INTER_LINEAR)
                # using matlab imresize
                img_LR = util.imresize_np(img_HR, 1 / scale, True)
                if img_LR.ndim == 2:
                    img_LR = np.expand_dims(img_LR, axis=2)

            H, W, C = img_LR.shape
            LR_size = HR_size // scale

            # randomly crop
            rnd_h = random.randint(0, max(0, H - LR_size))
            rnd_w = random.randint(0, max(0, W - LR_size))
            img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :]
            rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale)
            img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size, rnd_w_HR:rnd_w_HR + HR_size, :]

            # augmentation - flip, rotate
            img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \
                self.opt['use_rot'])

        # change color space if necessary
        if self.opt['color']:
            #img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # TODO during val no definetion
            img_LR = util.channel_convert(img_LR.shape[2], self.opt['color'], [img_LR])[0] # v appears to work ok 

        # BGR to RGB, HWC to CHW, numpy to tensor
        if img_HR.shape[2] == 3:
            img_HR = img_HR[:, :, [2, 1, 0]]
            img_LR = img_LR[:, :, [2, 1, 0]]
        img_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float()
        img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float()

        if LR_path is None:
            LR_path = HR_path
        return {'LR': img_LR, 'HR': img_HR, 'LR_path': LR_path, 'HR_path': HR_path} 
示例#2
0
    def __getitem__(self, index):
        HR_path, LR_path = None, None
        scale = self.opt['scale']
        HR_size = self.opt['HR_size']
        if HR_size:
            LR_size = HR_size // scale

        self.znorm = False  # Default case: images are in the [0,1] range
        if self.opt['znorm']:
            if self.opt['znorm'] == True:
                # Alternative: images are z-normalized to the [-1,1] range
                self.znorm = True

        ######## Read the images ########

        # Check if LR Path is provided
        if self.paths_LR:
            # If LR is provided, check if 'rand_flip_LR_HR' is enabled
            if self.opt['rand_flip_LR_HR'] and self.opt['phase'] == 'train':
                LRHRchance = random.uniform(0, 1)
                if self.opt['flip_chance']:
                    flip_chance = self.opt['flip_chance']
                else:
                    flip_chance = 0.05
                #print("Random Flip Enabled")
            # Normal case, no flipping:
            else:
                LRHRchance = 0.
                flip_chance = 0.
                #print("No Random Flip")

            # get HR and LR images
            # If enabled, random chance that LR and HR images are flipped
            # Normal case, no flipping
            # If img_LR (LR_path) doesn't exist, use img_HR (HR_path)
            if LRHRchance < (1 - flip_chance):
                HR_path = self.paths_HR[index]
                LR_path = self.paths_LR[index]
                if LR_path is None:
                    LR_path = HR_path
                #print("HR kept")
            # Flipped case:
            # If img_HR (LR_path) doesn't exist, use img_HR (LR_path)
            else:
                HR_path = self.paths_LR[index]
                LR_path = self.paths_HR[index]
                if HR_path is None:
                    HR_path = LR_path
                #print("HR flipped")

            # Read the LR and HR images from the provided paths
            img_LR = util.read_img(self.LR_env, LR_path, znorm=self.znorm)
            img_HR = util.read_img(self.HR_env, HR_path, znorm=self.znorm)

            # Even if LR dataset is provided, force to generate aug_downscale % of downscales OTF from HR
            # The code will later make sure img_LR has the correct size
            if self.opt['aug_downscale']:
                aug_downscale = self.opt['aug_downscale']
                if np.random.rand() < aug_downscale:
                    img_LR = img_HR

        # If LR is not provided, use HR and modify on the fly
        else:
            HR_path = self.paths_HR[index]
            img_HR = util.read_img(self.HR_env, HR_path, znorm=self.znorm)
            img_LR = img_HR

        ######## Modify the images ########

        # HR modcrop in the validation / test phase
        if self.opt['phase'] != 'train':
            img_HR = util.modcrop(img_HR, scale)

        # change color space if necessary
        # Note: Changing the LR colorspace here could make it so some colors are introduced when
        #  doing the augmentations later (ie: with Gaussian or Speckle noise), may be good if the
        #  model can learn to remove color noise in grayscale images, otherwise move to before
        #  converting to tensors
        # self.opt['color'] For both LR and HR as in the the original code, kept for compatibility
        # self.opt['color_HR'] and self.opt['color_LR'] for independent control
        if self.opt['color_HR'] or self.opt['color']:  # Only change HR
            img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'],
                                          [img_HR])[0]
        if self.opt['color_LR'] or self.opt['color']:  # Only change LR
            img_LR = util.channel_convert(img_LR.shape[2], self.opt['color'],
                                          [img_LR])[0]

        ######## Augmentations ########

        # Augmentations during training
        if self.opt['phase'] == 'train':

            # Validate there's an img_LR, if not, use img_HR
            if img_LR is None:
                img_LR = img_HR
                print("Image LR: ", LR_path, (
                    "was not loaded correctly, using HR pair to downscale on the fly."
                ))

            # Check that HR and LR have the same dimensions ratio, else, generate new LR from HR
            if img_HR.shape[0] // img_LR.shape[0] != img_HR.shape[
                    1] // img_LR.shape[1]:
                print(
                    "Warning: img_LR dimensions ratio does not match img_HR dimensions ratio for: ",
                    HR_path)
                img_LR = img_HR

            # Random Crop (reduce computing cost and adjust images to correct size first)
            if img_HR.shape[0] > HR_size or img_HR.shape[1] > HR_size:
                # Here the scale should be in respect to the images, not to the training scale (in case they are being scaled on the fly)
                scaleor = img_HR.shape[0] // img_LR.shape[0]
                img_HR, img_LR = augmentations.random_crop_pairs(
                    img_HR, img_LR, HR_size, scaleor)

            # Or if the HR images are too small, Resize to the HR_size size and fit LR pair to LR_size too
            if img_HR.shape[0] < HR_size or img_HR.shape[1] < HR_size:
                print("Warning: Image: ", HR_path,
                      " size does not match HR size: (", HR_size,
                      "). The image size is: ", img_HR.shape)
                # rescale HR image to the HR_size
                img_HR, _ = augmentations.resize_img(np.copy(img_HR),
                                                     crop_size=(HR_size,
                                                                HR_size),
                                                     algo=cv2.INTER_LINEAR)
                # rescale LR image to the LR_size (The original code discarded the img_LR and generated a new one on the fly from img_HR)
                img_LR, _ = augmentations.resize_img(np.copy(img_LR),
                                                     crop_size=(LR_size,
                                                                LR_size),
                                                     algo=cv2.INTER_LINEAR)

            # Randomly scale LR from HR during training if :
            # - LR dataset is not provided
            # - LR dataset is not in the correct scale
            # - Also to check if LR is not at the correct scale already (if img_LR was changed to img_HR)
            if img_LR.shape[0] != LR_size or img_LR.shape[1] != LR_size:
                ds_algo = 777  # default to matlab-like bicubic downscale
                # if manually set and scale algorithms are provided, then:
                if self.opt['lr_downscale']:
                    if self.opt['lr_downscale_types']:
                        ds_algo = self.opt['lr_downscale_types']
                else:  # else, if for some reason img_LR is too large, default to matlab-like bicubic downscale
                    # if not self.opt['aug_downscale']: #only print the warning if not being forced to use HR images instead of LR dataset (which is a known case)
                    print(
                        "LR image is too large, auto generating new LR for: ",
                        LR_path)
                img_LR, scale_interpol_algo = augmentations.scale_img(
                    img_LR, scale, algo=ds_algo)
                if self.znorm:
                    # The generated LR sometimes get slightly out of the [-1,1] range
                    np.clip(img_LR, -1., 1., out=img_LR)
                else:
                    # The generated LR sometimes get slightly out of the [0,1] range
                    np.clip(img_LR, 0., 1., out=img_LR)
            # """

            # Rotations. 'use_flip' = 180 or 270 degrees (mirror), 'use_rot' = 90 degrees, 'HR_rrot' = random rotations +-45 degrees
            if (self.opt['use_flip']
                    or self.opt['use_rot']) and self.opt['hr_rrot']:
                if np.random.rand() > 0.5:
                    img_LR, img_HR = util.augment([img_LR, img_HR],
                                                  self.opt['use_flip'],
                                                  self.opt['use_rot'])
                else:
                    if np.random.rand(
                    ) > 0.5:  # randomize the random rotations, so half the images are the original
                        img_HR, img_LR = augmentations.random_rotate_pairs(
                            img_HR, img_LR, HR_size, scale)
            elif (self.opt['use_flip']
                  or self.opt['use_rot']) and not self.opt['hr_rrot']:
                # augmentation - flip, rotate
                img_LR, img_HR = util.augment([img_LR, img_HR],
                                              self.opt['use_flip'],
                                              self.opt['use_rot'])
            elif self.opt['hr_rrot']:
                if np.random.rand(
                ) > 0.5:  # randomize the random rotations, so half the images are the original
                    img_HR, img_LR = augmentations.random_rotate_pairs(
                        img_HR, img_LR, HR_size, scale)

            # Final checks
            # if the resulting HR image size so far is too large or too small, resize HR to the correct size and downscale to generate a new LR on the fly
            if img_HR.shape[0] != HR_size or img_HR.shape[1] != HR_size:
                print("Image: ", HR_path, " size does not match HR size: (",
                      HR_size, "). The image size is: ", img_HR.shape)
                # rescale HR image to the HR_size
                img_HR, _ = augmentations.resize_img(np.copy(img_HR),
                                                     crop_size=(HR_size,
                                                                HR_size),
                                                     algo=cv2.INTER_LINEAR)
                # if manually provided and scale algorithms are provided, then:
                if self.opt['lr_downscale_types']:
                    ds_algo = self.opt['lr_downscale_types']
                else:
                    # using matlab imresize to generate LR pair
                    ds_algo = 777
                img_LR, _ = augmentations.scale_img(img_HR,
                                                    scale,
                                                    algo=ds_algo)
            # if the resulting LR so far does not have the correct dimensions, also generate a new HR-LR image pair on the fly
            if img_LR.shape[0] != LR_size or img_LR.shape[0] != LR_size:
                print("Image: ", LR_path, " size does not match LR size: (",
                      HR_size // scale, "). The image size is: ", img_LR.shape)
                # rescale HR image to the HR_size (should not be needed, but something went wrong before, just for sanity)
                img_HR, _ = augmentations.resize_img(np.copy(img_HR),
                                                     crop_size=(HR_size,
                                                                HR_size),
                                                     algo=cv2.INTER_LINEAR)
                # if manually provided and scale algorithms are provided, then:
                if self.opt['lr_downscale_types']:
                    ds_algo = self.opt['lr_downscale_types']
                else:
                    # using matlab imresize to generate LR pair
                    ds_algo = 777
                img_LR, _ = augmentations.scale_img(img_HR,
                                                    scale,
                                                    algo=ds_algo)

            # Below are the LR On The Fly augmentations
            # Add noise to HR if enabled AND noise types are provided (for noise2noise and similar)
            if self.opt['hr_noise']:
                if self.opt['hr_noise_types']:
                    img_HR, hr_noise_algo = augmentations.noise_img(
                        img_HR, noise_types=self.opt['hr_noise_types'])
                else:
                    print(
                        "Noise types 'hr_noise_types' not defined. Skipping OTF noise for HR."
                    )

            # Create color fringes
            # Caution: Can easily destabilize a model
            # Only applied to a small % of the images. Around 20% and 50% appears to be stable.
            if self.opt['lr_fringes']:
                lr_fringes_chance = self.opt['lr_fringes_chance'] if self.opt[
                    'lr_fringes_chance'] else 0.4
                if np.random.rand() > (1. - lr_fringes_chance):
                    img_LR = augmentations.translate_chan(img_LR)

            # """
            # v LR blur AND blur types are provided, else will skip
            if self.opt['lr_blur']:
                if self.opt['lr_blur_types']:
                    img_LR, blur_algo, blur_kernel_size = augmentations.blur_img(
                        img_LR, blur_algos=self.opt['lr_blur_types'])
                else:
                    print(
                        "Blur types 'lr_blur_types' not defined. Skipping OTF blur."
                    )
            # """

            # """
            # v LR primary noise: Add noise to LR if enabled AND noise types are provided, else will skip
            if self.opt['lr_noise']:
                if self.opt['lr_noise_types']:
                    img_LR, noise_algo = augmentations.noise_img(
                        img_LR, noise_types=self.opt['lr_noise_types'])
                else:
                    print(
                        "Noise types 'lr_noise_types' not defined. Skipping OTF noise."
                    )
            # v LR secondary noise: Add additional noise to LR if enabled AND noise types are provided, else will skip
            if self.opt['lr_noise2']:
                if self.opt['lr_noise_types2']:
                    img_LR, noise_algo2 = augmentations.noise_img(
                        img_LR, noise_types=self.opt['lr_noise_types2'])
                else:
                    print(
                        "Noise types 'lr_noise_types2' not defined. Skipping OTF secondary noise."
                    )
            # """

            # """
            # v LR cutout / LR random erasing (for inpainting/classification tests)
            if self.opt['lr_cutout'] and (self.opt['lr_erasing'] != True):
                img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2)
            elif self.opt['lr_erasing'] and (self.opt['lr_cutout'] != True):
                img_LR = augmentations.random_erasing(img_LR)
            elif self.opt['lr_cutout'] and self.opt['lr_erasing']:
                if np.random.rand(
                ) > 0.5:  # only do cutout or erasing, not both at the same time
                    img_LR = augmentations.cutout(img_LR,
                                                  img_LR.shape[0] // 2,
                                                  p=0.5)
                else:
                    img_LR = augmentations.random_erasing(img_LR,
                                                          p=0.5,
                                                          modes=[3])
            # """

            # Apply "auto levels" to images
            # Randomize for augmentation
            rand_levels = (1 - self.opt['rand_auto_levels']
                           ) if self.opt['rand_auto_levels'] else 1
            if self.opt['auto_levels'] and np.random.rand() > rand_levels:
                if self.opt['auto_levels'] == 'HR':
                    img_HR = augmentations.simplest_cb(img_HR,
                                                       znorm=self.znorm)
                elif self.opt['auto_levels'] == 'LR':
                    img_LR = augmentations.simplest_cb(img_LR,
                                                       znorm=self.znorm)
                elif self.opt['auto_levels'] == True or self.opt[
                        'auto_levels'] == 'Both':
                    img_HR = augmentations.simplest_cb(img_HR,
                                                       znorm=self.znorm)
                    img_LR = augmentations.simplest_cb(img_LR,
                                                       znorm=self.znorm)

            # Apply unsharpening mask to HR images
            # img_HR1 = img_HR
            # Randomize for augmentation
            rand_unsharp = (
                1 -
                self.opt['rand_unsharp']) if self.opt['rand_unsharp'] else 1
            if self.opt['unsharp_mask'] and np.random.rand() > rand_unsharp:
                img_HR = augmentations.unsharp_mask(img_HR, znorm=self.znorm)

        # For testing and validation
        if self.opt['phase'] != 'train':
            # Randomly downscale LR if enabled
            if self.opt['lr_downscale']:
                if self.opt['lr_downscale_types']:
                    img_LR, scale_interpol_algo = augmentations.scale_img(
                        img_LR, scale, algo=self.opt['lr_downscale_types'])
                else:  # Default to matlab-like bicubic downscale
                    img_LR, scale_interpol_algo = augmentations.scale_img(
                        img_LR, scale, algo=777)

        # Alternative position for changing the colorspace of LR.
        # if self.opt['color_LR']: # Only change LR
        # img_LR = util.channel_convert(img_LR.shape[2], self.opt['color'], [img_LR])[0]

        # Debug
        # Save img_LR and img_HR images to a directory to visualize what is the result of the on the fly augmentations
        # DO NOT LEAVE ON DURING REAL TRAINING
        #self.output_sample_imgs = True
        if self.opt['phase'] == 'train':
            if self.output_sample_imgs:
                import os
                # LR_dir, im_name = os.path.split(LR_path)
                HR_dir, im_name = os.path.split(HR_path)
                baseHRdir, _ = os.path.split(HR_dir)
                debugpath = os.path.join(baseHRdir, 'sampleOTFimgs')
                print('debugpathhhhhhhh', debugpath)

                # debugpath = os.path.join(os.path.split(LR_dir)[0], 'sampleOTFimgs')
                # debugpath = os.path.join('D:/tmp_test', 'sampleOTFimgs')
                # print(debugpath)
                if not os.path.exists(debugpath):
                    os.makedirs(debugpath)

                if self.opt[
                        'znorm']:  # Back from [-1,1] range to [0,1] range for OpenCV2
                    img_LRn = (img_LR + 1.0) / 2.0
                    img_HRn = (img_HR + 1.0) / 2.0
                    # img_HRn1 = (img_HR1 + 1.0) / 2.0
                else:  # Already in the [0,1] range for OpenCV2
                    img_LRn = img_LR
                    img_HRn = img_HR
                    # img_HRn1 = img_HR1

                import uuid
                hex = uuid.uuid4().hex
                # random name to save + had to multiply by 255, else getting all black image
                cv2.imwrite(os.path.join(debugpath, im_name + hex + '_LR.png'),
                            img_LRn * 255)
                # random name to save + had to multiply by 255, else getting all black image
                cv2.imwrite(os.path.join(debugpath, im_name + hex + '_HR.png'),
                            img_HRn * 255)
                # cv2.imwrite(debugpath+"\\"+im_name+hex+'_HR1.png',img_HRn1*255) #random name to save + had to multiply by 255, else getting all black image

        ######## Convert images to PyTorch Tensors ########
        """
        if (img_HR.min() < -1):
            print("HR.min :", img_HR.min())
            print(HR_path)
        if (img_HR.max() > 1):
            print("HR.max :", img_HR.max())
            print(HR_path)
        if (img_LR.min() < -1):
            print("LR.min :", img_LR.min())
            print(LR_path)
        if (img_LR.max() > 1):
            print("LR.max :", img_LR.max())
            print(LR_path)
        #"""

        # BGR to RGB, HWC to CHW, numpy to tensor
        if img_HR.shape[2] == 3:
            img_HR = img_HR[:, :, [2, 1, 0]]
            img_LR = img_LR[:, :, [2, 1, 0]]
        # BGRA to RGBA, HWC to CHW, numpy to tensor
        elif img_LR.shape[2] == 4:
            img_HR = img_HR[:, :, [2, 1, 0, 3]]
            img_LR = img_LR[:, :, [2, 1, 0, 3]]

        img_HR = torch.from_numpy(
            np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float()
        img_LR = torch.from_numpy(
            np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float()

        if LR_path is None:
            LR_path = HR_path
        return {
            'LR': img_LR,
            'HR': img_HR,
            'LR_path': LR_path,
            'HR_path': HR_path
        }
示例#3
0
    def __getitem__(self, index):
        HR_path, LR_path = None, None
        scale = self.opt['scale']
        HR_size = self.opt['HR_size']
        if HR_size:
            LR_size = HR_size // scale

        # Check if LR Path is provided
        if self.paths_LR:
            #If LR is provided, check if 'rand_flip_LR_HR' is enabled (Only will work if HR and LR images have the same initial size) during training
            if self.opt['rand_flip_LR_HR'] and (
                    self.LR_scale
                    or scale == 1) and self.opt['phase'] == 'train':
                LRHRchance = random.uniform(0, 1)
                if self.opt['flip_chance']:
                    flip_chance = self.opt['flip_chance']
                else:
                    flip_chance = 0.05
                #print("Random Flip Enabled")
            # Normal case, no flipping:
            else:
                LRHRchance = 0.
                flip_chance = 0.
                #print("No Random Flip")

            # get HR and LR images
            # If enabled, random chance that LR and HR images are flipped
            # Normal case, no flipping
            # If img_LR (LR_path) doesn't exist, use img_HR (HR_path)
            if LRHRchance < (1 - flip_chance):
                HR_path = self.paths_HR[index]
                LR_path = self.paths_LR[index]
                if LR_path is None:
                    LR_path = HR_path
                #print("HR kept")
            # Flipped case:
            # If img_HR (LR_path) doesn't exist, use img_HR (LR_path)
            else:
                HR_path = self.paths_LR[index]
                LR_path = self.paths_HR[index]
                if HR_path is None:
                    HR_path = LR_path
                #print("HR flipped")

            # Read the LR and HR images from the provided paths
            img_LR = util.read_img(self.LR_env, LR_path)
            img_HR = util.read_img(self.HR_env, HR_path)

            # Even if LR dataset is provided, force to generate aug_downscale % of downscales OTF from HR
            # The code will later make sure img_LR has the correct size
            if self.opt['aug_downscale']:
                aug_downscale = self.opt['aug_downscale']
                if np.random.rand() < aug_downscale:
                    img_LR = img_HR

        # If LR is not provided, use HR and modify on the fly
        else:
            HR_path = self.paths_HR[index]
            img_HR = util.read_img(self.HR_env, HR_path)
            img_LR = img_HR

        # HR modcrop in the validation / test phase
        if self.opt['phase'] != 'train':
            img_HR = util.modcrop(img_HR, scale)

        # change color space if necessary
        if self.opt['color']:
            img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'],
                                          [img_HR])[0]
            img_LR = util.channel_convert(img_LR.shape[2], self.opt['color'],
                                          [img_LR])[0]

        #Augmentations during training
        if self.opt['phase'] == 'train':

            #Validate there's an img_LR,
            if img_LR is None:
                img_LR = img_HR
                print("Image LR: ", LR_path, (
                    "was not loaded correctly, using HR pair to downscale on the fly."
                ))

            #Random Crop (reduce computing cost and adjust images to correct size first)
            if img_HR.shape[0] > HR_size or img_HR.shape[1] > HR_size:
                #Here the scale should be in respect to the images, not to the training scale (in case they are being scaled on the fly)
                if img_HR.shape[0] // img_LR.shape[0] is not img_HR.shape[
                        1] // img_LR.shape[1]:
                    print(
                        "Warning: img_LR dimensions ratio does not match img_HR dimensions ratio for: ",
                        HR_path)
                    img_LR = img_HR
                scaleor = img_HR.shape[0] // img_LR.shape[0]
                img_HR, img_LR = augmentations.random_crop_pairs(
                    img_HR, img_LR, HR_size, scaleor)

            #or if the HR images are too small, Resize to the HR_size size and fit LR pair to LR_size too
            if img_HR.shape[0] < HR_size or img_HR.shape[1] < HR_size:
                print("Warning: Image: ", HR_path,
                      " size does not match HR size: (", HR_size,
                      "). The image size is: ", img_HR.shape)
                # rescale HR image to the HR_size
                img_HR, _ = augmentations.resize_img(np.copy(img_HR),
                                                     crop_size=(HR_size,
                                                                HR_size),
                                                     algo=cv2.INTER_LINEAR)
                # rescale LR image to the LR_size
                img_LR, _ = augmentations.resize_img(np.copy(img_LR),
                                                     crop_size=(LR_size,
                                                                LR_size),
                                                     algo=cv2.INTER_LINEAR)

            #"""
            # randomly scale LR from HR during training if LR dataset is not provided
            # Also check if LR is not at the correct scale already
            if img_LR.shape[0] is not LR_size and img_LR.shape[
                    1] is not LR_size:
                if self.LR_scale:  # if manually provided and scale algorithms are provided, then:
                    if self.scale_algos:
                        ds_algo = self.scale_algos
                    else:
                        ds_algo = 777
                else:  # else, if for some reason img_LR is too large, default to matlab-like bicubic downscale
                    #if not self.opt['aug_downscale']: #only print the warning if not being forced to use HR images instead of LR dataset (which is a known case)
                    ds_algo = 777
                    print(
                        "LR image is too large, auto generating new LR for: ",
                        LR_path)
                img_LR, scale_interpol_algo = augmentations.scale_img(
                    img_LR, scale, algo=ds_algo)
            #"""

            # Rotations. 'use_flip' = 180 or 270 degrees (mirror), 'use_rot' = 90 degrees, 'HR_rrot' = random rotations +-45 degrees
            if self.opt['use_flip'] and self.opt['use_rot'] and self.HR_rrot:
                if np.random.rand() > 0.5:
                    img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \
                        self.opt['use_rot'])
                else:
                    if np.random.rand(
                    ) > 0.5:  # randomize the random rotations, so half the images are the original
                        img_HR, img_LR = augmentations.random_rotate_pairs(
                            img_HR, img_LR, HR_size, scale)
            elif (self.opt['use_flip']
                  or self.opt['use_rot']) and not self.HR_rrot:
                # augmentation - flip, rotate
                img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \
                    self.opt['use_rot'])
            elif self.HR_rrot:
                if np.random.rand(
                ) > 0.5:  # randomize the random rotations, so half the images are the original
                    img_HR, img_LR = augmentations.random_rotate_pairs(
                        img_HR, img_LR, HR_size, scale)

            # Final checks
            # if the resulting HR image size so far is too large or too small, resize HR to the correct size and downscale to generate a new LR on the fly
            if img_HR.shape[0] is not HR_size or img_HR.shape[1] is not HR_size:
                print("Image: ", HR_path, " size does not match HR size: (",
                      HR_size, "). The image size is: ", img_HR.shape)
                # rescale HR image to the HR_size
                img_HR, _ = augmentations.resize_img(np.copy(img_HR),
                                                     crop_size=(HR_size,
                                                                HR_size),
                                                     algo=cv2.INTER_LINEAR)
                if self.scale_algos:  # if manually provided and scale algorithms are provided, then:
                    ds_algo = self.scale_algos
                else:
                    ## using matlab imresize to generate LR pair
                    ds_algo = 777
                img_LR, _ = augmentations.scale_img(img_HR,
                                                    scale,
                                                    algo=ds_algo)

            # Final checks
            # if the resulting LR so far does not have the correct dimensions, also generate a new HR- LR image pair on the fly
            if img_LR.shape[0] is not LR_size or img_LR.shape[0] is not LR_size:
                print("Image: ", LR_path, " size does not match LR size: (",
                      HR_size // scale, "). The image size is: ", img_LR.shape)
                # rescale HR image to the HR_size
                img_HR, _ = augmentations.resize_img(np.copy(img_HR),
                                                     crop_size=(HR_size,
                                                                HR_size),
                                                     algo=cv2.INTER_LINEAR)
                if self.scale_algos:  # if manually provided and scale algorithms are provided, then:
                    ds_algo = self.scale_algos
                else:
                    ## using matlab imresize to generate LR pair
                    ds_algo = 777
                img_LR, _ = augmentations.scale_img(img_HR,
                                                    scale,
                                                    algo=ds_algo)

            # Add noise to HR if enabled
            if self.HR_noise:
                img_HR, hr_noise_algo = augmentations.noise_img(
                    img_HR, noise_types=self.hr_noise_types)

            # Below are the LR On The Fly augmentations
            #"""
            #v LR blur
            if self.LR_blur:
                img_LR, blur_algo, blur_kernel_size = augmentations.blur_img(
                    img_LR, blur_algos=self.blur_algos)
            #"""

            #"""
            #v LR primary noise
            if self.LR_noise:
                img_LR, noise_algo = augmentations.noise_img(
                    img_LR, noise_types=self.noise_types)
            #v LR secondary noise
            if self.LR_noise2:
                img_LR, noise_algo2 = augmentations.noise_img(
                    img_LR, noise_types=self.noise_types2)
            #"""

            #"""
            #v LR cutout / LR random erasing
            if self.LR_cutout and (self.LR_erasing != True):
                img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2)
            elif self.LR_erasing and (self.LR_cutout != True
                                      ):  #only do cutout or erasing, not both
                img_LR = augmentations.random_erasing(img_LR)
            elif self.LR_cutout and self.LR_erasing:
                if np.random.rand() > 0.5:
                    img_LR = augmentations.cutout(img_LR,
                                                  img_LR.shape[0] // 2,
                                                  p=0.5)
                else:
                    img_LR = augmentations.random_erasing(img_LR,
                                                          p=0.5,
                                                          modes=[3])
            #"""

        #For testing and validation
        if self.opt['phase'] != 'train':
            #"""
            #v randomly downscale LR if enabled
            if self.LR_scale:
                img_LR, scale_interpol_algo = augmentations.scale_img(
                    img_LR, scale, algo=self.scale_algos)
            #"""

        # Debug
        # Save img_LR and img_HR images to a directory to visualize what is the result of the on the fly augmentations
        # DO NOT LEAVE ON DURING REAL TRAINING
        # self.output_sample_imgs = True
        if self.opt['phase'] == 'train':
            if self.output_sample_imgs:
                import os
                LR_dir, im_name = os.path.split(LR_path)
                #baseHRdir, _ = os.path.split(HR_dir)
                #debugpath = os.path.join(baseHRdir, os.sep, 'sampleOTFimgs')

                debugpath = os.path.join(
                    os.path.split(LR_dir)[0], 'sampleOTFimgs')
                #print(debugpath)
                if not os.path.exists(debugpath):
                    os.makedirs(debugpath)

                import uuid
                hex = uuid.uuid4().hex
                cv2.imwrite(
                    debugpath + "\\" + im_name + hex + '_LR.png', img_LR * 255
                )  #random name to save + had to multiply by 255, else getting all black image
                cv2.imwrite(
                    debugpath + "\\" + im_name + hex + '_HR.png', img_HR * 255
                )  #random name to save + had to multiply by 255, else getting all black image

        # BGR to RGB, HWC to CHW, numpy to tensor
        if img_HR.shape[2] == 3:
            img_HR = img_HR[:, :, [2, 1, 0]]
            img_LR = img_LR[:, :, [2, 1, 0]]
        # BGRA to RGBA, HWC to CHW, numpy to tensor
        elif img_LR.shape[2] == 4:
            img_HR = img_HR[:, :, [2, 1, 0, 3]]
            img_LR = img_LR[:, :, [2, 1, 0, 3]]

        img_HR = torch.from_numpy(
            np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float()
        img_LR = torch.from_numpy(
            np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float()

        if LR_path is None:
            LR_path = HR_path
        return {
            'LR': img_LR,
            'HR': img_HR,
            'LR_path': LR_path,
            'HR_path': HR_path
        }