示例#1
0
    def compute_and_compare_bounds(self, eps, norm, IBP, method):
        input_data = torch.randn((N, 256))
        model = BoundedModule(self.original_model,
                              torch.empty_like(input_data))
        ptb = PerturbationLpNorm(norm=norm, eps=eps)
        ptb_data = BoundedTensor(input_data, ptb)
        pred = model(ptb_data)
        label = torch.argmax(pred, dim=1).cpu().detach().numpy()
        # Compute bounds.
        lb, ub = model.compute_bounds(IBP=IBP, method=method)
        # Compute dual norm.
        if norm == 1:
            q = np.inf
        elif norm == np.inf:
            q = 1.0
        else:
            q = 1.0 / (1.0 - (1.0 / norm))
        # Compute reference manually.
        weight, bias = list(model.parameters())
        norm = weight.norm(p=q, dim=1)
        expected_pred = input_data.matmul(weight.t()) + bias
        expected_ub = eps * norm + expected_pred
        expected_lb = -eps * norm + expected_pred

        # Check equivalence.
        self.assertEqual(expected_pred, pred)
        self.assertEqual(expected_ub, ub)
        self.assertEqual(expected_lb, lb)
    def test(self):
        model_oris = [
            models.model_resnet(width=1, mult=2),
            models.ResNet18(in_planes=2)
        ]
        self.result = []

        for model_ori in model_oris:
            conv_mode = 'patches'  # conv_mode can be set as 'matrix' or 'patches'

            normalize = torchvision.transforms.Normalize(
                mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])
            test_data = torchvision.datasets.CIFAR10(
                "./data",
                train=False,
                download=True,
                transform=torchvision.transforms.Compose(
                    [torchvision.transforms.ToTensor(), normalize]))
            N = 1
            n_classes = 10

            image = torch.Tensor(test_data.data[:N]).reshape(N, 3, 32, 32)
            image = image.to(torch.float32) / 255.0

            model = BoundedModule(model_ori,
                                  image,
                                  bound_opts={"conv_mode": conv_mode})

            ptb = PerturbationLpNorm(norm=np.inf, eps=0.03)
            image = BoundedTensor(image, ptb)
            pred = model(image)
            lb, ub = model.compute_bounds(IBP=False, C=None, method='backward')
            self.result += [lb, ub]

        self.check()
示例#3
0
def test():
    torch.manual_seed(1)
    torch.cuda.manual_seed_all(1)

    model = cnn_MNIST()
    checkpoint = torch.load("../examples/vision/pretrain/mnist_cnn_small.pth",
                            map_location="cpu")
    model.load_state_dict(checkpoint)

    N = 2
    n_classes = 10
    image = torch.randn(N, 1, 28, 28)
    image = image.to(torch.float32) / 255.0

    model = BoundedModule(model, torch.empty_like(image), device="cpu")
    eps = 0.3
    norm = np.inf
    ptb = PerturbationLpNorm(norm=norm, eps=eps)
    image = BoundedTensor(image, ptb)
    pred = model(image)
    lb, ub = model.compute_bounds()

    assert lb.shape == ub.shape == torch.Size((2, 10))

    path = 'data/constant_test_data'
    if args.gen_ref:
        torch.save((lb, ub), path)
    else:
        lb_ref, ub_ref = torch.load(path)
        print(lb)
        print(lb_ref)
        assert torch.allclose(lb, lb_ref)
        assert torch.allclose(ub, ub_ref)
    def __init__(self,
                 model_ori,
                 pred,
                 test,
                 solve_slope=False,
                 device='cuda',
                 simplify=True,
                 in_size=(1, 3, 32, 32)):
        """
        convert pytorch model to auto_LiRPA module
        """

        layers = list(model_ori.children())
        if simplify:
            added_prop_layers = add_single_prop(layers, pred, test)
            self.layers = added_prop_layers
        else:
            self.layers = layers
        net = nn.Sequential(*self.layers)
        self.solve_slope = solve_slope
        if solve_slope:
            self.net = BoundedModule(net,
                                     torch.rand(in_size),
                                     bound_opts={
                                         'relu': 'random_evaluation',
                                         'conv_mode': 'patches'
                                     },
                                     device=device)
        else:
            self.net = BoundedModule(net,
                                     torch.rand(in_size),
                                     bound_opts={'relu': 'same-slope'},
                                     device=device)
        self.net.eval()
        def verify_model(pert_weight=True, pert_bias=True, norm=np.inf, lb_name='', ub_name=''):
            model_ori_ = models.Models['mlp_3layer_weight_perturb'](pert_weight=pert_weight, pert_bias=pert_bias, norm=norm).eval()
            model_ori_.load_state_dict(state_dict)
            model_ = BoundedModule(model_ori_, inputs)
            model_.ptb = model_ori.ptb

            self.verify_bounds(model_, dummy_input, IBP=True, method='backward', forward_ret=forward_ret,
                        lb_name=lb_name + '_CROWN-IBP', ub_name=ub_name + '_CROWN-IBP')  # CROWN-IBP
            self.verify_bounds(model_, dummy_input, IBP=False, method='backward', forward_ret=forward_ret,
                        lb_name=lb_name + '_CROWN', ub_name=ub_name + '_CROWN')  # CROWN
示例#6
0
文件: agent.py 项目: Saeid-jhn/SA_PPO
 def setup_sarsa(self, lr_schedule, eps_scheduler, beta_scheduler):
     # Create the Sarsa model, with S and A as the input.
     self.sarsa_model = ValueDenseNet(self.NUM_FEATURES + self.NUM_ACTIONS, self.INITIALIZATION)
     self.sarsa_opt = optim.Adam(self.sarsa_model.parameters(), lr=self.VAL_LR, eps=1e-5)
     self.sarsa_scheduler = optim.lr_scheduler.LambdaLR(self.sarsa_opt, lr_schedule)
     self.sarsa_eps_scheduler = eps_scheduler
     self.sarsa_beta_scheduler = beta_scheduler
     # Convert model with relaxation wrapper.
     dummy_input = torch.randn(1, self.NUM_FEATURES + self.NUM_ACTIONS)
     self.relaxed_sarsa_model = BoundedModule(self.sarsa_model, dummy_input)
示例#7
0
def train(epoch, batches, type):
    meter = MultiAverageMeter()
    assert(optimizer is not None) 
    train = type == 'train'
    if args.robust:
        eps_scheduler.set_epoch_length(len(batches))    
        if train:
            eps_scheduler.train()
            eps_scheduler.step_epoch()
        else:
            eps_scheduler.eval()
    for i, batch in enumerate(batches):
        if args.robust:
            eps_scheduler.step_batch()
            eps = eps_scheduler.get_eps()
        else:
            eps = 0
        acc, loss, acc_robust, loss_robust = \
            step(model, ptb, batch, eps=eps, train=train)
        meter.update('acc', acc, len(batch))
        meter.update('loss', loss, len(batch))
        meter.update('acc_rob', acc_robust, len(batch))
        meter.update('loss_rob', loss_robust, len(batch))
        if train:
            if (i + 1) % args.gradient_accumulation_steps == 0 or (i + 1) == len(batches):
                scale_gradients(optimizer, i % args.gradient_accumulation_steps + 1, args.grad_clip)
                optimizer.step()
                optimizer.zero_grad()    
            if lr_scheduler is not None:
                lr_scheduler.step()                    
            writer.add_scalar('loss_train_{}'.format(epoch), meter.avg('loss'), i + 1)
            writer.add_scalar('loss_robust_train_{}'.format(epoch), meter.avg('loss_rob'), i + 1)
            writer.add_scalar('acc_train_{}'.format(epoch), meter.avg('acc'), i + 1)
            writer.add_scalar('acc_robust_train_{}'.format(epoch), meter.avg('acc_rob'), i + 1)
        if (i + 1) % args.log_interval == 0 or (i + 1) == len(batches):
            logger.info('Epoch {}, {} step {}/{}: eps {:.5f}, {}'.format(
                epoch, type, i + 1, len(batches), eps, meter))
            if lr_scheduler is not None:
                logger.info('lr {}'.format(lr_scheduler.get_lr()))
    writer.add_scalar('loss/{}'.format(type), meter.avg('loss'), epoch)
    writer.add_scalar('loss_robust/{}'.format(type), meter.avg('loss_rob'), epoch)
    writer.add_scalar('acc/{}'.format(type), meter.avg('acc'), epoch)
    writer.add_scalar('acc_robust/{}'.format(type), meter.avg('acc_rob'), epoch)

    if train:
        if args.loss_fusion:
            state_dict_loss = model_loss.state_dict() 
            state_dict = {}
            for name in state_dict_loss:
                assert(name.startswith('model.'))
                state_dict[name[6:]] = state_dict_loss[name]
            model_ori.load_state_dict(state_dict)
            model_bound = BoundedModule(
                model_ori, (dummy_embeddings, dummy_mask), bound_opts=bound_opts, device=args.device)
            model.model_from_embeddings = model_bound        
        model.save(epoch)

    return meter.avg('acc_rob')
    def torch2network(self, torch_model):
        from auto_LiRPA import BoundedModule

        my_input = torch.empty((1, ) + self.input_shape)
        if hasattr(torch_model, "core"):
            torch_model = torch_model.core

        model = BoundedModule(torch_model,
                              my_input,
                              bound_opts=self.bound_opts)
        return model
 def compute_and_compare_bounds(self, eps, norm, IBP, method):
     input_data = torch.randn((N, 1, input_dim, input_dim))
     model = BoundedModule(self.original_model,
                           torch.empty_like(input_data))
     ptb = PerturbationLpNorm(norm=norm, eps=eps)
     ptb_data = BoundedTensor(input_data, ptb)
     pred = model(ptb_data)
     label = torch.argmax(pred, dim=1).cpu().detach().numpy()
     # Compute bounds.
     lb, ub = model.compute_bounds(IBP=IBP, method=method)
     # Compute reference.
     conv_weight, conv_bias = list(model.parameters())
     conv_bias = conv_bias.view(1, out_channel, 1, 1)
     matrix_eye = torch.eye(input_dim * input_dim).view(
         input_dim * input_dim, 1, input_dim, input_dim)
     # Obtain equivalent weight and bias for convolution.
     weight = self.original_model.conv(
         matrix_eye
     ) - conv_bias  # Output is (batch, channel, weight, height).
     weight = weight.view(
         input_dim * input_dim,
         -1)  # Dimension is (flattened_input, flattened_output).
     bias = conv_bias.repeat(1, 1, input_dim // 2, input_dim // 2).view(-1)
     flattend_data = input_data.view(N, -1)
     # Compute dual norm.
     if norm == 1:
         q = np.inf
     elif norm == np.inf:
         q = 1.0
     else:
         q = 1.0 / (1.0 - (1.0 / norm))
     # Manually compute bounds.
     norm = weight.t().norm(p=q, dim=1)
     expected_pred = flattend_data.matmul(weight) + bias
     expected_ub = eps * norm + expected_pred
     expected_lb = -eps * norm + expected_pred
     # Check equivalence.
     if method == 'backward' or method == 'forward':
         self.assertEqual(expected_pred, pred)
         self.assertEqual(expected_ub, ub)
         self.assertEqual(expected_lb, lb)
示例#10
0
def main():
    torch.manual_seed(1234)
    torch.cuda.manual_seed_all(1234)
    random.seed(1234)
    np.random.seed(123)
    input_size = 11

    ## Step 1: Initial original model as usual; note that this model has BoundedParameter as its weight parameters
    model_ori = SimpleNet(input_dim=input_size)

    ## Step 2: Prepare dataset as usual
    dummy_input1 = torch.randn(1, input_size)
    inputs = (dummy_input1, )

    ## Step 3: wrap model with auto_LiRPA
    # The second parameter dummy_input is for constructing the trace of the computational graph.
    model = BoundedModule(model_ori, inputs)
    model.weight_perturbations = model_ori.weight_perturbations
    model.bias_perturbations = model_ori.bias_perturbations

    x = torch.randn(1, input_size)
    model(x)
    print('prediction', model_ori(x).squeeze().detach().cpu().numpy())
    compute_perturbations(model, x, np.linspace(0, 0.01, 5))
示例#11
0
    def test(self):
        model = cnn_MNIST()
        checkpoint = torch.load(
            "../examples/vision/pretrain/mnist_cnn_small.pth",
            map_location="cpu")
        model.load_state_dict(checkpoint)

        N = 2
        n_classes = 10
        image = torch.randn(N, 1, 28, 28)
        image = image.to(torch.float32) / 255.0

        model = BoundedModule(model, torch.empty_like(image), device="cpu")
        eps = 0.3
        norm = np.inf
        ptb = PerturbationLpNorm(norm=norm, eps=eps)
        image = BoundedTensor(image, ptb)
        pred = model(image)
        lb, ub = model.compute_bounds()

        assert lb.shape == ub.shape == torch.Size((2, 10))

        self.result = (lb, ub)
        self.check()
示例#12
0
文件: agent.py 项目: Saeid-jhn/SA_PPO
 def create_relaxed_model(self, time_in_state=False):
     # Create state perturbation model for robust PPO training.
     if isinstance(self.policy_model, CtsPolicy):
         from .convex_relaxation import RelaxedCtsPolicyForState
         relaxed_policy_model = RelaxedCtsPolicyForState(
                 self.NUM_FEATURES, self.NUM_ACTIONS, time_in_state=time_in_state,
                 activation=self.policy_activation, policy_model=self.policy_model)
         dummy_input1 = torch.randn(1, self.NUM_FEATURES)
         inputs = (dummy_input1, )
         self.relaxed_policy_model = BoundedModule(relaxed_policy_model, inputs)
         self.robust_eps_scheduler = LinearScheduler(self.params.ROBUST_PPO_EPS, self.params.ROBUST_PPO_EPS_SCHEDULER_OPTS)
         if self.params.ROBUST_PPO_BETA_SCHEDULER_OPTS == "same":
             self.robust_beta_scheduler = LinearScheduler(self.params.ROBUST_PPO_BETA, self.params.ROBUST_PPO_EPS_SCHEDULER_OPTS)
         else:
             self.robust_beta_scheduler = LinearScheduler(self.params.ROBUST_PPO_BETA, self.params.ROBUST_PPO_BETA_SCHEDULER_OPTS)
     else:
         raise NotImplementedError
示例#13
0
    def __init__(self,
                 state_dim,
                 action_dim,
                 actor_network,
                 critic_network,
                 mini_batch_size,
                 actor_opt_fn,
                 critic_opt_fn,
                 robust_params=None):
        super(RobustDeterministicActorCriticNet, self).__init__()

        if robust_params is None:
            robust_params = {}
        self.use_loss_fusion = robust_params.get('use_loss_fusion', False) # Use loss fusion to reduce complexity for convex relaxation. Default is False.
        self.use_full_backward = robust_params.get('use_full_backward', False)
        if self.use_loss_fusion:
            # Use auto_LiRPA to compute the L2 norm directly.
            self.fc_action = model_mlp_any_with_loss(state_dim, actor_network, action_dim)
            modules = self.fc_action._modules
            # Auto LiRPA wrapper
            self.fc_action = BoundedModule(
                    self.fc_action, (torch.empty(size=(1, state_dim)), torch.empty(size=(1, action_dim))), device=Config.DEVICE)
            # self.fc_action._modules = modules
            for n in self.fc_action.nodes:
                # Find the tanh neuron in computational graph
                if isinstance(n, BoundTanh):
                    self.fc_action_after_tanh = n
                    self.fc_action_pre_tanh = n.inputs[0]
                    break
        else:
            # Fully connected layer with [state_dim, 400, 300, action_dim] neurons and ReLU activation function
            self.fc_action = model_mlp_any(state_dim, actor_network, action_dim)
            # auto_lirpa wrapper
            self.fc_action = BoundedModule(
                    self.fc_action, (torch.empty(size=(1, state_dim)), ), device=Config.DEVICE)

        # Fully connected layer with [state_dim + action_dim, 400, 300, 1]
        self.fc_critic = model_mlp_any(state_dim + action_dim, critic_network, 1)
        # auto_lirpa wrapper
        self.fc_critic = BoundedModule(
                self.fc_critic, (torch.empty(size=(1, state_dim + action_dim)), ), device=Config.DEVICE)

        self.actor_params = self.fc_action.parameters()
        self.critic_params = self.fc_critic.parameters()

        self.actor_opt = actor_opt_fn(self.actor_params)
        self.critic_opt = critic_opt_fn(self.critic_params)
        self.to(Config.DEVICE)
        # Create identity specification matrices
        self.actor_identity = torch.eye(action_dim).repeat(mini_batch_size,1,1).to(Config.DEVICE)
        self.critic_identity = torch.eye(1).repeat(mini_batch_size,1,1).to(Config.DEVICE)
        self.action_dim = action_dim
        self.state_dim = state_dim
    def test_perturbation(self):
        np.random.seed(123) # FIXME This seed is inconsistent with other seeds (1234)

        model_ori = models.Models['mlp_3layer_weight_perturb'](pert_weight=True, pert_bias=True).eval()
        self.result['model'] = model_ori.state_dict()
        self.result['data'] = torch.randn(8, 1, 28, 28)
        model_ori.load_state_dict(self.result['model'])
        state_dict = copy.deepcopy(model_ori.state_dict())  
        dummy_input = self.result['data'].requires_grad_()
        inputs = (dummy_input,)

        model = BoundedModule(model_ori, inputs)
        forward_ret = model(dummy_input)
        model_ori.eval()

        assert torch.isclose(model_ori(dummy_input), model_ori(dummy_input), 1e-8).all()

        def verify_model(pert_weight=True, pert_bias=True, norm=np.inf, lb_name='', ub_name=''):
            model_ori_ = models.Models['mlp_3layer_weight_perturb'](pert_weight=pert_weight, pert_bias=pert_bias, norm=norm).eval()
            model_ori_.load_state_dict(state_dict)
            model_ = BoundedModule(model_ori_, inputs)
            model_.ptb = model_ori.ptb

            self.verify_bounds(model_, dummy_input, IBP=True, method='backward', forward_ret=forward_ret,
                        lb_name=lb_name + '_CROWN-IBP', ub_name=ub_name + '_CROWN-IBP')  # CROWN-IBP
            self.verify_bounds(model_, dummy_input, IBP=False, method='backward', forward_ret=forward_ret,
                        lb_name=lb_name + '_CROWN', ub_name=ub_name + '_CROWN')  # CROWN

        # Linf
        verify_model(pert_weight=True, pert_bias=True, norm=np.inf, lb_name='l_inf_weights_bias_lb',
                    ub_name='l_inf_weights_bias_ub')
        verify_model(pert_weight=True, pert_bias=False, norm=np.inf, lb_name='l_inf_weights_lb', ub_name='l_inf_weights_ub')
        verify_model(pert_weight=False, pert_bias=True, norm=np.inf, lb_name='l_inf_bias_lb', ub_name='l_inf_bias_ub')

        # L2
        verify_model(pert_weight=True, pert_bias=True, norm=2, lb_name='l_2_weights_bias_lb', ub_name='l_2_weights_bias_ub')
        verify_model(pert_weight=True, pert_bias=False, norm=2, lb_name='l_2_weights_lb', ub_name='l_2_weights_ub')
        verify_model(pert_weight=False, pert_bias=True, norm=2, lb_name='l_2_bias_lb', ub_name='l_2_bias_ub')

        if self.generate:
            self.save()
示例#15
0
    def __init__(self,
                 name,
                 env,
                 input_shape,
                 num_actions,
                 robust=False,
                 width=1):
        super(QNetwork, self).__init__()
        self.env = env
        self.input_shape = input_shape
        self.num_actions = num_actions
        self.robust = robust
        if name == 'DQN':
            self.features = nn.Sequential(
                nn.Linear(input_shape[0], 128 * width), nn.ReLU(),
                nn.Linear(128 * width, 128 * width), nn.ReLU(),
                nn.Linear(128 * width, self.env.action_space.n))
        elif name == 'CnnDQN':
            self.features = nn.Sequential(
                nn.Conv2d(input_shape[0], 32 * width, kernel_size=8, stride=4),
                nn.ReLU(),
                nn.Conv2d(32 * width, 64 * width, kernel_size=4, stride=2),
                nn.ReLU(),
                nn.Conv2d(64 * width, 64 * width, kernel_size=3, stride=1),
                nn.ReLU(), Flatten(), nn.Linear(3136 * width, 512 * width),
                nn.ReLU(), nn.Linear(512 * width, self.num_actions))
        elif name == 'DuelingCnnDQN':
            self.features = DuelingCnnDQN(input_shape, num_actions, width)
        else:
            raise NotImplementedError(
                '{} network structure not implemented.'.format(name))

        if self.robust:
            dummy_input = torch.empty_like(torch.randn((1, ) + input_shape))
            self.features = BoundedModule(self.features,
                                          dummy_input,
                                          device="cuda" if USE_CUDA else "cpu")
示例#16
0
def test():
    torch.manual_seed(1)
    torch.cuda.manual_seed_all(1)

    models = [2, 3]
    paddings = [1, 2]
    strides = [1, 3]

    N = 2
    n_classes = 10
    image = torch.randn(N, 1, 28, 28)
    image = image.to(torch.float32) / 255.0

    for layer_num in models:
        for padding in paddings:
            for stride in strides:
                # print(layer_num, padding, stride)
                try:
                    model_ori = cnn_model(layer_num, padding, stride)
                except:
                    continue

                model = BoundedModule(model_ori,
                                      torch.empty_like(image),
                                      device="cpu",
                                      bound_opts={"conv_mode": "patches"})
                eps = 0.3
                norm = np.inf
                ptb = PerturbationLpNorm(norm=norm, eps=eps)
                image = BoundedTensor(image, ptb)
                pred = model(image)
                lb, ub = model.compute_bounds()

                model = BoundedModule(model_ori,
                                      torch.empty_like(image),
                                      device="cpu",
                                      bound_opts={"conv_mode": "matrix"})
                pred = model(image)
                lb_ref, ub_ref = model.compute_bounds()

                assert lb.shape == ub.shape == torch.Size((N, n_classes))
                assert torch.allclose(lb, lb_ref)
                assert torch.allclose(ub, ub_ref)
示例#17
0
def test():
    net = ResNet18()
    N = 2
    n_classes = 10
    x = torch.randn(N, 3, 32, 32)
    y = net(x)

    device = 'cpu'
    if device == 'cuda':
        x = x.cuda()
        y = y.cuda()

    model = BoundedModule(net,
                          torch.empty_like(x),
                          bound_opts={"conv_mode": "patches"},
                          device=device)
    print("Model structure: \n", str(net))
    eps = 0.3
    norm = np.inf
    ptb = PerturbationLpNorm(norm=norm, eps=eps)
    image = BoundedTensor(x, ptb)
    pred = model(image)
    lb, ub = model.compute_bounds()

    model = BoundedModule(net,
                          torch.empty_like(x),
                          bound_opts={"conv_mode": "matrix"},
                          device=device)
    eps = 0.3
    norm = np.inf
    ptb = PerturbationLpNorm(norm=norm, eps=eps)
    image = BoundedTensor(x, ptb)
    pred = model(image)
    lb_ref, ub_ref = model.compute_bounds()

    # assert lb.shape == ub.shape == torch.Size((N, n_classes))
    print((lb - lb_ref).sum(), (ub - ub_ref).sum())
    assert torch.allclose(lb, lb_ref)
    assert torch.allclose(ub, ub_ref)
def main():
    torch.manual_seed(1234)
    torch.cuda.manual_seed_all(1234)
    random.seed(1234)
    np.random.seed(123)
    input_size = 17
    action_size = 6

    ## Step 1: Initial original model as usual; note that this model has BoundedParameter as its weight parameters
    model_ori = RelaxedCtsPolicyForState(state_dim=input_size, action_dim=action_size)
    state_dict = torch.load('test_policy_net.model')
    if not forward_one:
        state_dict['log_weight'] = state_dict['log_stdev']
    del state_dict['log_stdev']
    # model_ori.load_state_dict(state_dict)

    ## Step 2: Prepare dataset as usual
    dummy_input1 = torch.randn(1, input_size)
    dummy_input2 = torch.randn(1, action_size)
    if forward_one:
        inputs = (dummy_input1, )
    else:
        inputs = (dummy_input1, dummy_input2)
    model_ori(*inputs)
    # inputs = (dummy_input1, )
    # dummy_input2 = model_ori.get_means(dummy_input1)

    ## Step 3: wrap model with auto_LiRPA
    # The second parameter dummy_input is for constructing the trace of the computational graph.
    model = BoundedModule(model_ori, inputs)

    all_states = x = torch.randn(2, input_size)
    means = model_ori.get_means(x).detach()
    if forward_one:
        print('prediction', model_ori(x).sum())
    else:
        print('prediction', model_ori(x, means).sum())
    action_means = means


    perturbations = np.arange(0.0, 0.1, 0.01)
    compute_perturbations(model, x, means, perturbations)


    if forward_one:
        # pred = model_ori(all_states)
        # pred = ((pred - means) ** 2).mean()
        ikl, ckl = get_kl_bound(model, all_states, action_means, 0.1)
        ikl, ckl = get_kl_bound(model, all_states, action_means, 0.0)
        print('ikl', ikl.mean().item())
        print('ckl', ckl.mean().item())
        pred = (0.5 * ikl + 0.5 * ckl).mean()
        pred.backward()
        print('pred', pred.item())
    else:
        iub, cub = get_kl_bound(model, all_states, action_means, 0.1)
        # iub, cub = get_kl_bound(model, all_states, action_means, 0)
        # iub, cub = model_ori(all_states, action_means).mean()
        print('iub', iub.mean().item())
        print('cub', cub.mean().item())
        kl = (0.5 * iub + 0.5 * cub).mean()
        kl.backward()
        print('kl', kl.item())
    for p in model.parameters():
        if p.grad is not None:
            print(p.size(), p.grad.abs().sum().item())
            # print(p.size(), p.grad)
        else:
            print(p.size(), p.grad)
示例#19
0
                                         shuffle=False,
                                         num_workers=4,
                                         pin_memory=True)
# For illustration we only use 2 image from dataset
n_classes = 100

for batch_idx, (inputs, targets) in enumerate(testloader):
    if True:
        inputs, targets = inputs.cuda(), targets.cuda()

    if batch_idx < 2:

        ## Step 3: wrap model with auto_LiRPA
        # The second parameter is for constructing the trace of the computational graph, and its content is not important.

        model = BoundedModule(model, inputs, device="cuda")

        ## Step 4: Compute bounds using LiRPA given a perturbation
        eps = 0.3
        norm = np.inf
        ptb = PerturbationLpNorm(norm=norm, eps=eps)
        image = BoundedTensor(inputs, ptb)
        # Get model prediction as usual
        pred = model(image)
        label = torch.argmax(pred, dim=1).cpu().numpy()
        # Compute bounds
        lb, ub = model.compute_bounds()

        ## Step 5: Final output
        pred = pred.detach().cpu().numpy()
        lb = lb.detach().cpu().numpy()
示例#20
0
def main(args):
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    random.seed(args.seed)
    np.random.seed(args.seed)

    ## Step 1: Initial original model as usual, see model details in models/example_feedforward.py and models/example_resnet.py
    model_ori = models.Models[args.model]()
    epoch = 0
    if args.load:
        checkpoint = torch.load(args.load)
        epoch, state_dict = checkpoint['epoch'], checkpoint['state_dict']
        opt_state = None
        try:
            opt_state = checkpoint['optimizer']
        except KeyError:
            print('no opt_state found')
        for k, v in state_dict.items():
            assert torch.isnan(v).any().cpu().numpy() == 0 and torch.isinf(
                v).any().cpu().numpy() == 0
        model_ori.load_state_dict(state_dict)
        logger.log('Checkpoint loaded: {}'.format(args.load))

    ## Step 2: Prepare dataset as usual
    dummy_input = torch.randn(1, 3, 56, 56)
    normalize = transforms.Normalize(mean=[0.4802, 0.4481, 0.3975],
                                     std=[0.2302, 0.2265, 0.2262])
    train_data = datasets.ImageFolder(args.data_dir + '/train',
                                      transform=transforms.Compose([
                                          transforms.RandomHorizontalFlip(),
                                          transforms.RandomCrop(
                                              56, padding_mode='edge'),
                                          transforms.ToTensor(),
                                          normalize,
                                      ]))
    test_data = datasets.ImageFolder(
        args.data_dir + '/val',
        transform=transforms.Compose([
            # transforms.RandomResizedCrop(64, scale=(0.875, 0.875), ratio=(1., 1.)),
            transforms.CenterCrop(56),
            transforms.ToTensor(),
            normalize
        ]))

    train_data = torch.utils.data.DataLoader(train_data,
                                             batch_size=args.batch_size,
                                             shuffle=True,
                                             pin_memory=True,
                                             num_workers=min(
                                                 multiprocessing.cpu_count(),
                                                 4))
    test_data = torch.utils.data.DataLoader(test_data,
                                            batch_size=args.batch_size // 5,
                                            pin_memory=True,
                                            num_workers=min(
                                                multiprocessing.cpu_count(),
                                                4))
    train_data.mean = test_data.mean = torch.tensor([0.4802, 0.4481, 0.3975])
    train_data.std = test_data.std = torch.tensor([0.2302, 0.2265, 0.2262])

    ## Step 3: wrap model with auto_LiRPA
    # The second parameter dummy_input is for constructing the trace of the computational graph.
    model = BoundedModule(model_ori,
                          dummy_input,
                          bound_opts={'relu': args.bound_opts},
                          device=args.device)
    model_loss = BoundedModule(CrossEntropyWrapper(model_ori),
                               (dummy_input, torch.zeros(1, dtype=torch.long)),
                               bound_opts={
                                   'relu': args.bound_opts,
                                   'loss_fusion': True
                               },
                               device=args.device)
    model_loss = BoundDataParallel(model_loss)

    ## Step 4 prepare optimizer, epsilon scheduler and learning rate scheduler
    opt = optim.Adam(model_loss.parameters(), lr=args.lr)
    norm = float(args.norm)
    lr_scheduler = optim.lr_scheduler.MultiStepLR(
        opt, milestones=args.lr_decay_milestones, gamma=0.1)
    eps_scheduler = eval(args.scheduler_name)(args.eps, args.scheduler_opts)
    logger.log(str(model_ori))

    if args.load:
        if opt_state:
            opt.load_state_dict(opt_state)
            logger.log('resume opt_state')

    # skip epochs
    if epoch > 0:
        epoch_length = int(
            (len(train_data.dataset) + train_data.batch_size - 1) /
            train_data.batch_size)
        eps_scheduler.set_epoch_length(epoch_length)
        eps_scheduler.train()
        for i in range(epoch):
            lr_scheduler.step()
            eps_scheduler.step_epoch(verbose=True)
            for j in range(epoch_length):
                eps_scheduler.step_batch()
        logger.log('resume from eps={:.12f}'.format(eps_scheduler.get_eps()))

    ## Step 5: start training
    if args.verify:
        eps_scheduler = FixedScheduler(args.eps)
        with torch.no_grad():
            Train(model,
                  1,
                  test_data,
                  eps_scheduler,
                  norm,
                  False,
                  None,
                  'IBP',
                  loss_fusion=False,
                  final_node_name=None)
    else:
        timer = 0.0
        best_err = 1e10
        # with torch.autograd.detect_anomaly():
        for t in range(epoch + 1, args.num_epochs + 1):
            logger.log("Epoch {}, learning rate {}".format(
                t, lr_scheduler.get_last_lr()))
            start_time = time.time()
            Train(model_loss,
                  t,
                  train_data,
                  eps_scheduler,
                  norm,
                  True,
                  opt,
                  args.bound_type,
                  loss_fusion=True)
            lr_scheduler.step()
            epoch_time = time.time() - start_time
            timer += epoch_time
            logger.log('Epoch time: {:.4f}, Total time: {:.4f}'.format(
                epoch_time, timer))

            logger.log("Evaluating...")
            torch.cuda.empty_cache()

            # remove 'model.' in state_dict
            state_dict_loss = model_loss.state_dict()
            state_dict = {}
            for name in state_dict_loss:
                assert (name.startswith('model.'))
                state_dict[name[6:]] = state_dict_loss[name]

            with torch.no_grad():
                if int(eps_scheduler.params['start']) + int(
                        eps_scheduler.params['length']) > t >= int(
                            eps_scheduler.params['start']):
                    m = Train(model_loss,
                              t,
                              test_data,
                              eps_scheduler,
                              norm,
                              False,
                              None,
                              args.bound_type,
                              loss_fusion=True)
                else:
                    model_ori.load_state_dict(state_dict)
                    model = BoundedModule(model_ori,
                                          dummy_input,
                                          bound_opts={'relu': args.bound_opts},
                                          device=args.device)
                    model = BoundDataParallel(model)
                    m = Train(model,
                              t,
                              test_data,
                              eps_scheduler,
                              norm,
                              False,
                              None,
                              'IBP',
                              loss_fusion=False)
                    del model

            save_dict = {
                'state_dict': state_dict,
                'epoch': t,
                'optimizer': opt.state_dict()
            }
            if t < int(eps_scheduler.params['start']):
                torch.save(save_dict, 'saved_models/natural_' + exp_name)
            elif t > int(eps_scheduler.params['start']) + int(
                    eps_scheduler.params['length']):
                current_err = m.avg('Verified_Err')
                if current_err < best_err:
                    best_err = current_err
                    torch.save(
                        save_dict, 'saved_models/' + exp_name + '_best_' +
                        str(best_err)[:6])
            else:
                torch.save(save_dict, 'saved_models/' + exp_name)
            torch.cuda.empty_cache()
示例#21
0
test_data = torchvision.datasets.CIFAR100(root=DATAROOT,
                                          train=False,
                                          download=True,
                                          transform=transform_test)
testloader = torch.utils.data.DataLoader(test_data,
                                         batch_size=64,
                                         shuffle=False,
                                         num_workers=4,
                                         pin_memory=True)

n_classes = 100
for batch_idx, (image, targets) in enumerate(testloader):
    image, targets = image.cuda(), targets.cuda()
    if batch_idx < 2:
        print(batch_idx)
        model = BoundedModule(model, torch.empty_like(image), device="cuda")
        eps = 0.3
        norm = np.inf
        ptb = PerturbationLpNorm(norm=norm, eps=eps)
        image = BoundedTensor(image, ptb)
        # Get model prediction as usual
        pred = model(image)
        label = torch.argmax(pred, dim=1).cpu().numpy()
        # Compute bounds
        lb, ub = model.compute_bounds()

        pred = pred.detach().cpu().numpy()
        lb = lb.detach().cpu().numpy()
        ub = ub.detach().cpu().numpy()
        for i in range(batch_idx):
            print("Image {} top-1 prediction {}".format(i, label[i]))
示例#22
0
def main(args):
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    random.seed(args.seed)
    np.random.seed(args.seed)

    ## Step 1: Initial original model as usual, see model details in models/example_feedforward.py and models/example_resnet.py
    if args.data == 'MNIST':
        model_ori = models.Models[args.model](in_ch=1, in_dim=28)
    else:
        model_ori = models.Models[args.model]()
    epoch = 0
    if args.load:
        checkpoint = torch.load(args.load)
        epoch, state_dict = checkpoint['epoch'], checkpoint['state_dict']
        opt_state = None
        try:
            opt_state = checkpoint['optimizer']
        except KeyError:
            print('no opt_state found')
        for k, v in state_dict.items():
            assert torch.isnan(v).any().cpu().numpy() == 0 and torch.isinf(
                v).any().cpu().numpy() == 0
        model_ori.load_state_dict(state_dict)
        logger.log('Checkpoint loaded: {}'.format(args.load))

    ## Step 2: Prepare dataset as usual
    if args.data == 'MNIST':
        dummy_input = torch.randn(1, 1, 28, 28)
        train_data = datasets.MNIST("./data",
                                    train=True,
                                    download=True,
                                    transform=transforms.ToTensor())
        test_data = datasets.MNIST("./data",
                                   train=False,
                                   download=True,
                                   transform=transforms.ToTensor())
    elif args.data == 'CIFAR':
        dummy_input = torch.randn(1, 3, 32, 32)
        normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
                                         std=[0.2023, 0.1994, 0.2010])
        train_data = datasets.CIFAR10("./data",
                                      train=True,
                                      download=True,
                                      transform=transforms.Compose([
                                          transforms.RandomHorizontalFlip(),
                                          transforms.RandomCrop(
                                              32, 4, padding_mode='edge'),
                                          transforms.ToTensor(), normalize
                                      ]))
        test_data = datasets.CIFAR10("./data",
                                     train=False,
                                     download=True,
                                     transform=transforms.Compose(
                                         [transforms.ToTensor(), normalize]))

    train_data = torch.utils.data.DataLoader(train_data,
                                             batch_size=args.batch_size,
                                             shuffle=True,
                                             pin_memory=True,
                                             num_workers=min(
                                                 multiprocessing.cpu_count(),
                                                 4))
    test_data = torch.utils.data.DataLoader(test_data,
                                            batch_size=args.batch_size // 2,
                                            pin_memory=True,
                                            num_workers=min(
                                                multiprocessing.cpu_count(),
                                                4))
    if args.data == 'MNIST':
        train_data.mean = test_data.mean = torch.tensor([0.0])
        train_data.std = test_data.std = torch.tensor([1.0])
    elif args.data == 'CIFAR':
        train_data.mean = test_data.mean = torch.tensor(
            [0.4914, 0.4822, 0.4465])
        train_data.std = test_data.std = torch.tensor([0.2023, 0.1994, 0.2010])

    ## Step 3: wrap model with auto_LiRPA
    # The second parameter dummy_input is for constructing the trace of the computational graph.
    model = BoundedModule(model_ori,
                          dummy_input,
                          bound_opts={'relu': args.bound_opts},
                          device=args.device)
    final_name1 = model.final_name
    model_loss = BoundedModule(CrossEntropyWrapper(model_ori),
                               (dummy_input, torch.zeros(1, dtype=torch.long)),
                               bound_opts={
                                   'relu': args.bound_opts,
                                   'loss_fusion': True
                               },
                               device=args.device)
    # after CrossEntropyWrapper, the final name will change because of one additional input node in CrossEntropyWrapper
    final_name2 = model_loss._modules[final_name1].output_name[0]
    assert type(model._modules[final_name1]) == type(
        model_loss._modules[final_name2])
    if args.no_loss_fusion:
        model_loss = BoundedModule(model_ori,
                                   dummy_input,
                                   bound_opts={'relu': args.bound_opts},
                                   device=args.device)
        final_name2 = None
    model_loss = BoundDataParallel(model_loss)

    macs, params = profile(model_ori, (dummy_input.cuda(), ))
    logger.log('macs: {}, params: {}'.format(macs, params))

    ## Step 4 prepare optimizer, epsilon scheduler and learning rate scheduler
    opt = optim.Adam(model_loss.parameters(), lr=args.lr)
    norm = float(args.norm)
    lr_scheduler = optim.lr_scheduler.MultiStepLR(
        opt, milestones=args.lr_decay_milestones, gamma=0.1)
    eps_scheduler = eval(args.scheduler_name)(args.eps, args.scheduler_opts)
    logger.log(str(model_ori))

    # skip epochs
    if epoch > 0:
        epoch_length = int(
            (len(train_data.dataset) + train_data.batch_size - 1) /
            train_data.batch_size)
        eps_scheduler.set_epoch_length(epoch_length)
        eps_scheduler.train()
        for i in range(epoch):
            lr_scheduler.step()
            eps_scheduler.step_epoch(verbose=True)
            for j in range(epoch_length):
                eps_scheduler.step_batch()
        logger.log('resume from eps={:.12f}'.format(eps_scheduler.get_eps()))

    if args.load:
        if opt_state:
            opt.load_state_dict(opt_state)
            logger.log('resume opt_state')

    ## Step 5: start training
    if args.verify:
        eps_scheduler = FixedScheduler(args.eps)
        with torch.no_grad():
            Train(model,
                  1,
                  test_data,
                  eps_scheduler,
                  norm,
                  False,
                  None,
                  'IBP',
                  loss_fusion=False,
                  final_node_name=None)
    else:
        timer = 0.0
        best_acc = 1e10
        # with torch.autograd.detect_anomaly():
        for t in range(epoch + 1, args.num_epochs + 1):
            logger.log("Epoch {}, learning rate {}".format(
                t, lr_scheduler.get_last_lr()))
            start_time = time.time()
            Train(model_loss,
                  t,
                  train_data,
                  eps_scheduler,
                  norm,
                  True,
                  opt,
                  args.bound_type,
                  loss_fusion=not args.no_loss_fusion)
            lr_scheduler.step()
            epoch_time = time.time() - start_time
            timer += epoch_time
            logger.log('Epoch time: {:.4f}, Total time: {:.4f}'.format(
                epoch_time, timer))

            logger.log("Evaluating...")
            torch.cuda.empty_cache()

            # remove 'model.' in state_dict for CrossEntropyWrapper
            state_dict_loss = model_loss.state_dict()
            state_dict = {}
            if not args.no_loss_fusion:
                for name in state_dict_loss:
                    assert (name.startswith('model.'))
                    state_dict[name[6:]] = state_dict_loss[name]
            else:
                state_dict = state_dict_loss

            with torch.no_grad():
                if t > int(eps_scheduler.params['start']) + int(
                        eps_scheduler.params['length']):
                    m = Train(model_loss,
                              t,
                              test_data,
                              FixedScheduler(8. / 255),
                              norm,
                              False,
                              None,
                              'IBP',
                              loss_fusion=False,
                              final_node_name=final_name2)
                else:
                    m = Train(model_loss,
                              t,
                              test_data,
                              eps_scheduler,
                              norm,
                              False,
                              None,
                              'IBP',
                              loss_fusion=False,
                              final_node_name=final_name2)

            save_dict = {
                'state_dict': state_dict,
                'epoch': t,
                'optimizer': opt.state_dict()
            }
            if t < int(eps_scheduler.params['start']):
                torch.save(save_dict, 'saved_models/natural_' + exp_name)
            elif t > int(eps_scheduler.params['start']) + int(
                    eps_scheduler.params['length']):
                current_acc = m.avg('Verified_Err')
                if current_acc < best_acc:
                    best_acc = current_acc
                    torch.save(
                        save_dict, 'saved_models/' + exp_name + '_best_' +
                        str(best_acc)[:6])
                else:
                    torch.save(save_dict, 'saved_models/' + exp_name)
            else:
                torch.save(save_dict, 'saved_models/' + exp_name)
            torch.cuda.empty_cache()
示例#23
0
def main(args):
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    random.seed(args.seed)
    np.random.seed(args.seed)

    ## Load the model with BoundedParameter for weight perturbation.
    model_ori = models.Models['mlp_3layer_weight_perturb']()

    epoch = 0
    ## Load a checkpoint, if requested.
    if args.load:
        checkpoint = torch.load(args.load)
        epoch, state_dict = checkpoint['epoch'], checkpoint['state_dict']
        opt_state = None
        try:
            opt_state = checkpoint['optimizer']
        except KeyError:
            print('no opt_state found')
        for k, v in state_dict.items():
            assert torch.isnan(v).any().cpu().numpy() == 0 and torch.isinf(v).any().cpu().numpy() == 0
        model_ori.load_state_dict(state_dict)
        logger.log('Checkpoint loaded: {}'.format(args.load))

    ## Step 2: Prepare dataset as usual
    dummy_input = torch.randn(1, 1, 28, 28)
    train_data,  test_data = mnist_loaders(datasets.MNIST, batch_size=args.batch_size, ratio=args.ratio)
    train_data.mean = test_data.mean = torch.tensor([0.0])
    train_data.std = test_data.std = torch.tensor([1.0])

    ## Step 3: wrap model with auto_LiRPA
    # The second parameter dummy_input is for constructing the trace of the computational graph.
    model = BoundedModule(model_ori, dummy_input, bound_opts={'relu':args.bound_opts}, device=args.device)
    final_name1 = model.final_name
    model_loss = BoundedModule(CrossEntropyWrapper(model_ori), (dummy_input, torch.zeros(1, dtype=torch.long)),
                               bound_opts= { 'relu': args.bound_opts, 'loss_fusion': True }, device=args.device)

    # after CrossEntropyWrapper, the final name will change because of one more input node in CrossEntropyWrapper
    final_name2 = model_loss._modules[final_name1].output_name[0]
    assert type(model._modules[final_name1]) == type(model_loss._modules[final_name2])
    if args.multigpu:
        model_loss = BoundDataParallel(model_loss)
    model_loss.ptb = model.ptb = model_ori.ptb # Perturbation on the parameters

    ## Step 4 prepare optimizer, epsilon scheduler and learning rate scheduler
    if args.opt == 'ADAM':
        opt = optim.Adam(model_loss.parameters(), lr=args.lr, weight_decay=0.01)
    elif args.opt == 'SGD':
        opt = optim.SGD(model_loss.parameters(), lr=args.lr, weight_decay=0.01)

    norm = float(args.norm)
    lr_scheduler = optim.lr_scheduler.MultiStepLR(opt, milestones=args.lr_decay_milestones, gamma=0.1)
    eps_scheduler = eval(args.scheduler_name)(args.eps, args.scheduler_opts)
    logger.log(str(model_ori))

    # Skip epochs if we continue training from a checkpoint.
    if epoch > 0:
        epoch_length = int((len(train_data.dataset) + train_data.batch_size - 1) / train_data.batch_size)
        eps_scheduler.set_epoch_length(epoch_length)
        eps_scheduler.train()
        for i in range(epoch):
            lr_scheduler.step()
            eps_scheduler.step_epoch(verbose=True)
            for j in range(epoch_length):
                eps_scheduler.step_batch()
        logger.log('resume from eps={:.12f}'.format(eps_scheduler.get_eps()))

    if args.load:
        if opt_state:
            opt.load_state_dict(opt_state)
            logger.log('resume opt_state')

    ## Step 5: start training.
    if args.verify:
        eps_scheduler = FixedScheduler(args.eps)
        with torch.no_grad():
            Train(model, 1, test_data, eps_scheduler, norm, False, None, 'CROWN-IBP', loss_fusion=False, final_node_name=None)
    else:
        timer = 0.0
        best_loss = 1e10
        # Main training loop
        for t in range(epoch + 1, args.num_epochs+1):
            logger.log("Epoch {}, learning rate {}".format(t, lr_scheduler.get_last_lr()))
            start_time = time.time()

            # Training one epoch
            Train(model_loss, t, train_data, eps_scheduler, norm, True, opt, args.bound_type, loss_fusion=True)
            lr_scheduler.step()
            epoch_time = time.time() - start_time
            timer += epoch_time
            logger.log('Epoch time: {:.4f}, Total time: {:.4f}'.format(epoch_time, timer))

            logger.log("Evaluating...")
            torch.cuda.empty_cache()

            # remove 'model.' in state_dict (hack for saving models so far...)
            state_dict_loss = model_loss.state_dict()
            state_dict = {}
            for name in state_dict_loss:
                assert (name.startswith('model.'))
                state_dict[name[6:]] = state_dict_loss[name]

            # Test one epoch.
            with torch.no_grad():
                m = Train(model_loss, t, test_data, eps_scheduler, norm, False, None, args.bound_type,
                            loss_fusion=False, final_node_name=final_name2)

            # Save checkpoints.
            save_dict = {'state_dict': state_dict, 'epoch': t, 'optimizer': opt.state_dict()}
            if not os.path.exists('saved_models'):
                os.mkdir('saved_models')
            if t < int(eps_scheduler.params['start']):
                torch.save(save_dict, 'saved_models/natural_' + exp_name)
            elif t > int(eps_scheduler.params['start']) + int(eps_scheduler.params['length']):
                current_loss = m.avg('Loss')
                if current_loss < best_loss:
                    best_loss = current_loss
                    torch.save(save_dict, 'saved_models/' + exp_name + '_best_' + str(best_loss)[:6])
                else:
                    torch.save(save_dict, 'saved_models/' + exp_name)
            else:
                torch.save(save_dict, 'saved_models/' + exp_name)
            torch.cuda.empty_cache()
示例#24
0
elif args.model == 'lstm':
    dummy_mask = torch.zeros(1, args.max_sent_length, device=args.device)
    model = LSTM(args, data_train)

dev_batches = get_batches(data_dev, args.batch_size)
test_batches = get_batches(data_test, args.batch_size)

ptb = PerturbationSynonym(budget=args.budget)
dummy_embeddings = BoundedTensor(dummy_embeddings, ptb)
model_ori = model.model_from_embeddings
bound_opts = {'relu': args.bound_opts_relu, 'exp': 'no-max-input'}
if isinstance(model_ori, BoundedModule):
    model_bound = model_ori
else:
    model_bound = BoundedModule(model_ori, (dummy_embeddings, dummy_mask),
                                bound_opts=bound_opts,
                                device=args.device)
model.model_from_embeddings = model_bound
if args.loss_fusion:
    bound_opts['loss_fusion'] = True
    model_loss = BoundedModule(
        CrossEntropyWrapperMultiInput(model_ori),
        (torch.zeros(1, dtype=torch.long), dummy_embeddings, dummy_mask),
        bound_opts=bound_opts,
        device=args.device)

ptb.model = model
optimizer = model.build_optimizer()
if args.lr_decay < 1:
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=10,
示例#25
0
class LiRPAConvNet:
    def __init__(self,
                 model_ori,
                 pred,
                 test,
                 solve_slope=False,
                 device='cuda',
                 simplify=True,
                 in_size=(1, 3, 32, 32)):
        """
        convert pytorch model to auto_LiRPA module
        """

        layers = list(model_ori.children())
        if simplify:
            added_prop_layers = add_single_prop(layers, pred, test)
            self.layers = added_prop_layers
        else:
            self.layers = layers
        net = nn.Sequential(*self.layers)
        self.solve_slope = solve_slope
        if solve_slope:
            self.net = BoundedModule(net,
                                     torch.rand(in_size),
                                     bound_opts={
                                         'relu': 'random_evaluation',
                                         'conv_mode': 'patches'
                                     },
                                     device=device)
        else:
            self.net = BoundedModule(net,
                                     torch.rand(in_size),
                                     bound_opts={'relu': 'same-slope'},
                                     device=device)
        self.net.eval()

    def get_lower_bound(self,
                        pre_lbs,
                        pre_ubs,
                        decision,
                        slopes=None,
                        history=[],
                        decision_thresh=0,
                        layer_set_bound=True,
                        beta=True):
        """
        # (in) pre_lbs: layers list -> tensor(batch, layer shape)
        # (in) relu_mask: relu layers list -> tensor(batch, relu layer shape (view-1))
        # (in) slope: relu layers list -> tensor(batch, relu layer shape)
        # (out) lower_bounds: batch list -> layers list -> tensor(layer shape)
        # (out) masks_ret: batch list -> relu layers list -> tensor(relu layer shape)
        # (out) slope: batch list -> relu layers list -> tensor(relu layer shape)
        """
        start = time.time()
        lower_bounds, upper_bounds, masks_ret, slopes = self.update_bounds_parallel(
            pre_lbs,
            pre_ubs,
            decision,
            slopes,
            beta=beta,
            early_stop=False,
            opt_choice="adam",
            iteration=20,
            history=history,
            decision_thresh=decision_thresh,
            layer_set_bound=layer_set_bound)

        end = time.time()
        print('batch time: ', end - start)
        return [i[-1] for i in upper_bounds
                ], [i[-1] for i in lower_bounds
                    ], None, masks_ret, lower_bounds, upper_bounds, slopes

    def get_relu(self, model, idx):
        # find the i-th ReLU layer
        i = 0
        for layer in model.children():
            if isinstance(layer, BoundRelu):
                i += 1
                if i == idx:
                    return layer

    def get_candidate(self, model, lb, ub):
        # get the intermediate bounds in the current model and build self.name_dict which contains the important index
        # and model name pairs

        if self.input_domain.ndim == 2:
            lower_bounds = [self.input_domain[:, 0].squeeze(-1)]
            upper_bounds = [self.input_domain[:, 1].squeeze(-1)]
        else:
            lower_bounds = [self.input_domain[:, :, :, 0].squeeze(-1)]
            upper_bounds = [self.input_domain[:, :, :, 1].squeeze(-1)]
        self.pre_relu_indices = []
        idx, i, model_i = 0, 0, 0
        # build a name_dict to map layer idx in self.layers to BoundedModule
        self.name_dict = {0: model.root_name[0]}
        model_names = list(model._modules)

        for layer in self.layers:
            if isinstance(layer, nn.ReLU):
                i += 1
                this_relu = self.get_relu(model, i)
                lower_bounds[-1] = this_relu.inputs[0].lower.squeeze().detach()
                upper_bounds[-1] = this_relu.inputs[0].upper.squeeze().detach()
                lower_bounds.append(F.relu(lower_bounds[-1]).detach())
                upper_bounds.append(F.relu(upper_bounds[-1]).detach())
                self.pre_relu_indices.append(idx)
                self.name_dict[idx + 1] = model_names[model_i]
                model_i += 1
            elif isinstance(layer, Flatten):
                lower_bounds.append(lower_bounds[-1].reshape(-1).detach())
                upper_bounds.append(upper_bounds[-1].reshape(-1).detach())
                self.name_dict[idx + 1] = model_names[model_i]
                model_i += 8  # Flatten is split to 8 ops in BoundedModule
            elif isinstance(layer, ZeroPad2d):
                lower_bounds.append(F.pad(lower_bounds[-1], layer.padding))
                upper_bounds.append(F.pad(upper_bounds[-1], layer.padding))
                self.name_dict[idx + 1] = model_names[model_i]
                model_i += 24
            else:
                self.name_dict[idx + 1] = model_names[model_i]
                lower_bounds.append([])
                upper_bounds.append([])
                model_i += 1
            idx += 1

        # Also add the bounds on the final thing
        lower_bounds[-1] = (lb.view(-1).detach())
        upper_bounds[-1] = (ub.view(-1).detach())

        return lower_bounds, upper_bounds, self.pre_relu_indices

    def get_candidate_parallel(self, model, lb, ub, batch):
        # get the intermediate bounds in the current model
        lower_bounds = [
            self.input_domain[:, :, :, 0].squeeze(-1).repeat(batch, 1, 1, 1)
        ]
        upper_bounds = [
            self.input_domain[:, :, :, 1].squeeze(-1).repeat(batch, 1, 1, 1)
        ]
        idx, i, = 0, 0
        for layer in self.layers:
            if isinstance(layer, nn.ReLU):
                i += 1
                this_relu = self.get_relu(model, i)
                lower_bounds[-1] = this_relu.inputs[0].lower.detach()
                upper_bounds[-1] = this_relu.inputs[0].upper.detach()
                lower_bounds.append(F.relu(lower_bounds[-1]).detach(
                ))  # TODO we actually do not need the bounds after ReLU
                upper_bounds.append(F.relu(upper_bounds[-1]).detach())
            elif isinstance(layer, Flatten):
                lower_bounds.append(lower_bounds[-1].reshape(batch,
                                                             -1).detach())
                upper_bounds.append(upper_bounds[-1].reshape(batch,
                                                             -1).detach())
            elif isinstance(layer, nn.ZeroPad2d):
                lower_bounds.append(
                    F.pad(lower_bounds[-1], layer.padding).detach())
                upper_bounds.append(
                    F.pad(upper_bounds[-1], layer.padding).detach())

            else:
                lower_bounds.append([])
                upper_bounds.append([])
            idx += 1

        # Also add the bounds on the final thing
        lower_bounds[-1] = (lb.view(batch, -1).detach())
        upper_bounds[-1] = (ub.view(batch, -1).detach())

        return lower_bounds, upper_bounds

    def get_mask_parallel(self, model):
        # get the mask of status of ReLU, 0 means inactive neurons, -1 means unstable neurons, 1 means active neurons
        mask = []
        idx, i, = 0, 0
        for layer in self.layers:
            if isinstance(layer, nn.ReLU):
                i += 1
                this_relu = self.get_relu(model, i)
                mask_tmp = torch.zeros_like(this_relu.inputs[0].lower)
                unstable = ((this_relu.inputs[0].lower < 0) &
                            (this_relu.inputs[0].upper > 0))
                mask_tmp[unstable] = -1
                active = (this_relu.inputs[0].lower >= 0)
                mask_tmp[active] = 1
                # otherwise 0, for inactive neurons

                mask.append(mask_tmp.reshape(mask_tmp.size(0), -1))

        ret = []
        for i in range(mask[0].size(0)):
            ret.append([j[i] for j in mask])

        return ret

    def get_beta(self, model):
        b = []
        bm = []
        for m in model._modules.values():
            if isinstance(m, BoundRelu):
                b.append(m.beta.clone().detach())
                bm.append(m.beta_mask.clone().detach())

        retb = []
        retbm = []
        for i in range(b[0].size(0)):
            retb.append([j[i] for j in b])
            retbm.append([j[i] for j in bm])
        return (retb, retbm)

    def get_slope(self, model):
        s = []
        for m in model._modules.values():
            if isinstance(m, BoundRelu):
                s.append(m.slope.transpose(0, 1).clone().detach())

        ret = []
        for i in range(s[0].size(0)):
            ret.append([j[i] for j in s])
        return ret

    def set_slope(self, model, slope):
        idx = 0
        for m in model._modules.values():
            if isinstance(m, BoundRelu):
                # m.slope = slope[idx].repeat(2, *([1] * (slope[idx].ndim - 1))).requires_grad_(True)
                m.slope = slope[idx].repeat(
                    2, *([1] * (slope[idx].ndim - 1))).transpose(
                        0, 1).requires_grad_(True)
                idx += 1

    def reset_beta(self, model, batch=0):
        if batch == 0:
            for m in model._modules.values():
                if isinstance(m, BoundRelu):
                    m.beta.data = m.beta.data * 0.
                    m.beta_mask.data = m.beta_mask.data * 0.
                    # print("beta[{}]".format(batch), m.beta.shape, m.beta_mask.shape)
        else:
            for m in model._modules.values():
                if isinstance(m, BoundRelu):
                    ndim = m.beta.data.ndim
                    # m.beta.data=(m.beta.data[0:1]*0.).repeat(batch*2, *([1] * (ndim - 1))).requires_grad_(True)
                    # m.beta_mask.data=(m.beta_mask.data[0:1]*0.).repeat(batch*2, *([1] * (ndim - 1))).requires_grad_(True)
                    m.beta = torch.zeros(m.beta[:, 0:1].shape).repeat(
                        1, batch * 2, *([1] * (ndim - 2))).detach().to(
                            m.beta.device).requires_grad_(True)
                    m.beta_mask = torch.zeros(m.beta_mask[0:1].shape).repeat(
                        batch * 2, *([1] * (ndim - 2))).detach().to(
                            m.beta.device).requires_grad_(False)
                    # print("beta[{}]".format(batch), m.beta.shape, m.beta_mask.shape)

    def update_bounds_parallel(self,
                               pre_lb_all=None,
                               pre_ub_all=None,
                               decision=None,
                               slopes=None,
                               beta=True,
                               early_stop=True,
                               opt_choice="default",
                               iteration=20,
                               history=[],
                               decision_thresh=0,
                               layer_set_bound=True):
        # update optimize-CROWN bounds in a parallel way
        total_batch = len(decision)
        decision = np.array(decision)

        layers_need_change = np.unique(decision[:, 0])
        layers_need_change.sort()

        # initial results with empty list
        ret_l = [[] for _ in range(len(decision) * 2)]
        ret_u = [[] for _ in range(len(decision) * 2)]
        masks = [[] for _ in range(len(decision) * 2)]
        ret_s = [[] for _ in range(len(decision) * 2)]

        pre_lb_all_cp = copy.deepcopy(pre_lb_all)
        pre_ub_all_cp = copy.deepcopy(pre_ub_all)

        for idx in layers_need_change:
            # iteratively change upper and lower bound from former to later layer
            tmp_d = np.argwhere(decision[:, 0] == idx)  # .squeeze()
            # idx is the index of relu layers, change_idx is the index of all layers
            change_idx = self.pre_relu_indices[idx]

            batch = len(tmp_d)
            select_history = [
                history[idx] for idx in tmp_d.squeeze().reshape(-1)
            ]

            if beta:
                # update beta mask, put it after reset_beta
                # reset beta according to the shape of batch
                self.reset_beta(self.net, batch)

                # print("select history", select_history)

                bound_relus = []
                for m in self.net._modules.values():
                    if isinstance(m, BoundRelu):
                        bound_relus.append(m)
                        m.beta_mask.data = m.beta_mask.data.view(batch * 2, -1)

                for bi in range(batch):
                    d = tmp_d[bi][0]
                    # assign current decision to each point of a batch
                    bound_relus[int(decision[d][0])].beta_mask.data[
                        bi, int(decision[d][1])] = 1
                    bound_relus[int(decision[d][0])].beta_mask.data[
                        bi + batch, int(decision[d][1])] = -1
                    # print("assign", bi, decision[d], 1, bound_relus[decision[d][0]].beta_mask.data[bi, decision[d][1]])
                    # print("assign", bi+batch, decision[d], -1, bound_relus[decision[d][0]].beta_mask.data[bi+batch, decision[d][1]])
                    # assign history decision according to select_history
                    for (hid, hl), hc in select_history[bi]:
                        bound_relus[hid].beta_mask.data[bi, hl] = int(
                            (hc - 0.5) * 2)
                        bound_relus[hid].beta_mask.data[bi + batch, hl] = int(
                            (hc - 0.5) * 2)
                        # print("assign", bi, [hid, hl], hc, bound_relus[hid].beta_mask.data[bi, hl])
                        # print("assign", bi+batch, [hid, hl], hc, bound_relus[hid].beta_mask.data[bi+batch, hl])

                # sanity check: beta_mask should only be assigned for split nodes
                for m in bound_relus:
                    m.beta_mask.data = m.beta_mask.data.view(m.beta[0].shape)

            slope_select = [i[tmp_d.squeeze()].clone() for i in slopes]

            pre_lb_all = [i[tmp_d.squeeze()].clone() for i in pre_lb_all_cp]
            pre_ub_all = [i[tmp_d.squeeze()].clone() for i in pre_ub_all_cp]

            if batch == 1:
                pre_lb_all = [i.clone().unsqueeze(0) for i in pre_lb_all]
                pre_ub_all = [i.clone().unsqueeze(0) for i in pre_ub_all]
                slope_select = [i.clone().unsqueeze(0) for i in slope_select]

            upper_bounds = [i.clone() for i in pre_ub_all[:change_idx + 1]]
            lower_bounds = [i.clone() for i in pre_lb_all[:change_idx + 1]]
            upper_bounds_cp = copy.deepcopy(upper_bounds)
            lower_bounds_cp = copy.deepcopy(lower_bounds)

            for i in range(batch):
                d = tmp_d[i][0]
                upper_bounds[change_idx].view(batch, -1)[i][decision[d][1]] = 0
                lower_bounds[change_idx].view(batch, -1)[i][decision[d][1]] = 0

            pre_lb_all = [torch.cat(2 * [i]) for i in pre_lb_all]
            pre_ub_all = [torch.cat(2 * [i]) for i in pre_ub_all]

            # merge the inactive and active splits together
            new_candidate = {}
            for i, (l, uc, lc, u) in enumerate(
                    zip(lower_bounds, upper_bounds_cp, lower_bounds_cp,
                        upper_bounds)):
                # we set lower = 0 in first half batch, and upper = 0 in second half batch
                new_candidate[self.name_dict[i]] = [
                    torch.cat((l, lc), dim=0),
                    torch.cat((uc, u), dim=0)
                ]

            if not layer_set_bound:
                new_candidate_p = {}
                for i, (l,
                        u) in enumerate(zip(pre_lb_all[:-2], pre_ub_all[:-2])):
                    # we set lower = 0 in first half batch, and upper = 0 in second half batch
                    new_candidate_p[self.name_dict[i]] = [l, u]

            # create new_x here since batch may change
            ptb = PerturbationLpNorm(
                norm=self.x.ptb.norm,
                eps=self.x.ptb.eps,
                x_L=self.x.ptb.x_L.repeat(batch * 2, 1, 1, 1),
                x_U=self.x.ptb.x_U.repeat(batch * 2, 1, 1, 1))
            new_x = BoundedTensor(self.x.data.repeat(batch * 2, 1, 1, 1), ptb)
            self.net(
                new_x
            )  # batch may change, so we need to do forward to set some shapes here

            if len(slope_select) > 0:
                # set slope here again
                self.set_slope(self.net, slope_select)

            torch.cuda.empty_cache()
            if layer_set_bound:
                # we fix the intermediate bounds before change_idx-th layer by using normal CROWN
                if self.solve_slope and change_idx >= self.pre_relu_indices[-1]:
                    # we split the ReLU at last layer, directly use Optimized CROWN
                    self.net.set_bound_opts({
                        'ob_start_idx':
                        sum(change_idx <= x for x in self.pre_relu_indices),
                        'ob_beta':
                        beta,
                        'ob_update_by_layer':
                        layer_set_bound,
                        'ob_iteration':
                        iteration
                    })
                    lb, ub, = self.net.compute_bounds(
                        x=(new_x, ),
                        IBP=False,
                        C=None,
                        method='CROWN-Optimized',
                        new_interval=new_candidate,
                        return_A=False,
                        bound_upper=False)
                else:
                    # we split the ReLU before the last layer, calculate intermediate bounds by using normal CROWN
                    self.net.set_relu_used_count(
                        sum(change_idx <= x for x in self.pre_relu_indices))
                    with torch.no_grad():
                        lb, ub, = self.net.compute_bounds(
                            x=(new_x, ),
                            IBP=False,
                            C=None,
                            method='backward',
                            new_interval=new_candidate,
                            bound_upper=False,
                            return_A=False)

                # we don't care about the upper bound of the last layer
                lower_bounds_new, upper_bounds_new = self.get_candidate_parallel(
                    self.net, lb, lb + 99, batch * 2)

                if change_idx < self.pre_relu_indices[-1]:
                    # check whether we have a better bounds before, and preset all intermediate bounds
                    for i, (l, u) in enumerate(
                            zip(lower_bounds_new[change_idx + 2:-1],
                                upper_bounds_new[change_idx + 2:-1])):
                        new_candidate[self.name_dict[i + change_idx + 2]] = [
                            torch.max(l, pre_lb_all[i + change_idx + 2]),
                            torch.min(u, pre_ub_all[i + change_idx + 2])
                        ]

                    if self.solve_slope:
                        self.net.set_bound_opts({
                            'ob_start_idx':
                            sum(change_idx <= x
                                for x in self.pre_relu_indices),
                            'ob_beta':
                            beta,
                            'ob_update_by_layer':
                            layer_set_bound,
                            'ob_iteration':
                            iteration
                        })
                        lb, ub, = self.net.compute_bounds(
                            x=(new_x, ),
                            IBP=False,
                            C=None,
                            method='CROWN-Optimized',
                            new_interval=new_candidate,
                            return_A=False,
                            bound_upper=False)
                    else:
                        self.net.set_relu_used_count(
                            sum(change_idx <= x
                                for x in self.pre_relu_indices))
                        with torch.no_grad():
                            lb, ub, = self.net.compute_bounds(
                                x=(new_x, ),
                                IBP=False,
                                C=None,
                                method='backward',
                                new_interval=new_candidate,
                                bound_upper=False,
                                return_A=False)

            else:
                # all intermediate bounds are re-calculate by optimized CROWN
                self.net.set_bound_opts({
                    'ob_start_idx': 99,
                    'ob_beta': beta,
                    'ob_update_by_layer': layer_set_bound,
                    'ob_iteration': iteration
                })
                lb, ub, = self.net.compute_bounds(x=(new_x, ),
                                                  IBP=False,
                                                  C=None,
                                                  method='CROWN-Optimized',
                                                  new_interval=new_candidate_p,
                                                  return_A=False,
                                                  bound_upper=False)

            # print('best results of parent nodes', pre_lb_all[-1].repeat(2, 1))
            # print('finally, after optimization:', lower_bounds_new[-1])

            # primal = self.get_primals(A_dict, return_x=True)
            lower_bounds_new, upper_bounds_new = self.get_candidate_parallel(
                self.net, lb, lb + 99, batch * 2)

            lower_bounds_new[-1] = torch.max(lower_bounds_new[-1],
                                             pre_lb_all[-1])
            upper_bounds_new[-1] = torch.min(upper_bounds_new[-1],
                                             pre_ub_all[-1])

            mask = self.get_mask_parallel(self.net)
            if len(slope_select) > 0:
                slope = self.get_slope(self.net)

            # reshape the results
            for i in range(len(tmp_d)):
                ret_l[int(tmp_d[i])] = [j[i] for j in lower_bounds_new]
                ret_l[int(tmp_d[i] + total_batch)] = [
                    j[i + batch] for j in lower_bounds_new
                ]

                ret_u[int(tmp_d[i])] = [j[i] for j in upper_bounds_new]
                ret_u[int(tmp_d[i] + total_batch)] = [
                    j[i + batch] for j in upper_bounds_new
                ]

                masks[int(tmp_d[i])] = mask[i]
                masks[int(tmp_d[i] + total_batch)] = mask[i + batch]
                if len(slope_select) > 0:
                    ret_s[int(tmp_d[i])] = slope[i]
                    ret_s[int(tmp_d[i] + total_batch)] = slope[i + batch]

        return ret_l, ret_u, masks, ret_s

    def fake_forward(self, x):
        for layer in self.layers:
            if type(layer) is nn.Linear:
                x = F.linear(x, layer.weight, layer.bias)
            elif type(layer) is nn.Conv2d:
                x = F.conv2d(x, layer.weight, layer.bias, layer.stride,
                             layer.padding, layer.dilation, layer.groups)
            elif type(layer) == nn.ReLU:
                x = F.relu(x)
            elif type(layer) == Flatten:
                x = x.reshape(x.shape[0], -1)
            elif type(layer) == nn.ZeroPad2d:
                x = F.pad(x, layer.padding)
            else:
                print(type(layer))
                raise NotImplementedError

        return x

    def get_primals(self, A, return_x=False):
        # get primal input by using A matrix
        input_A_lower = A[self.layer_names[-1]][self.net.input_name[0]][0]
        batch = input_A_lower.shape[1]
        l = self.input_domain[:, :, :, 0].repeat(batch, 1, 1, 1)
        u = self.input_domain[:, :, :, 1].repeat(batch, 1, 1, 1)
        diff = 0.5 * (l - u)  # already flip the sign by using lower - upper
        net_input = diff * torch.sign(input_A_lower.squeeze(0)) + self.x
        if return_x: return net_input

        primals = [net_input]
        for layer in self.layers:
            if type(layer) is nn.Linear:
                pre = primals[-1]
                primals.append(F.linear(pre, layer.weight, layer.bias))
            elif type(layer) is nn.Conv2d:
                pre = primals[-1]
                primals.append(
                    F.conv2d(pre, layer.weight, layer.bias, layer.stride,
                             layer.padding, layer.dilation, layer.groups))
            elif type(layer) == nn.ReLU:
                primals.append(F.relu(primals[-1]))
            elif type(layer) == Flatten:
                primals.append(primals[-1].reshape(primals[-1].shape[0], -1))
            else:
                print(type(layer))
                raise NotImplementedError

        # primals = primals[1:]
        primals = [i.detach().clone() for i in primals]
        # print('primals', primals[-1])

        return net_input, primals

    def get_relu_mask(self):
        relu_mask = []
        relu_idx = 0
        for layer in self.layers:
            if type(layer) == nn.ReLU:
                relu_idx += 1
                this_relu = self.get_relu(self.net, relu_idx)
                new_layer_mask = []
                ratios_all = this_relu.d.squeeze(0)
                for slope in ratios_all.flatten():
                    if slope.item() == 1.0:
                        new_layer_mask.append(1)
                    elif slope.item() == 0.0:
                        new_layer_mask.append(0)
                    else:
                        new_layer_mask.append(-1)
                relu_mask.append(
                    torch.tensor(new_layer_mask).to(self.x.device))

        return relu_mask

    def build_the_model(self, input_domain, x, no_lp=True, decision_thresh=0):
        self.x = x
        self.input_domain = input_domain

        slope_opt = None

        # first get CROWN bounds
        if self.solve_slope:
            self.net.init_slope(self.x)
            self.net.set_bound_opts({
                'ob_iteration': 100,
                'ob_beta': False,
                'ob_alpha': True,
                'ob_opt_choice': "adam",
                'ob_decision_thresh': decision_thresh,
                'ob_early_stop': False,
                'ob_log': False,
                'ob_start_idx': 99,
                'ob_keep_best': True,
                'ob_update_by_layer': True,
                'ob_lr': 0.1
            })
            lb, ub, A_dict = self.net.compute_bounds(x=(x, ),
                                                     IBP=False,
                                                     C=None,
                                                     method='CROWN-Optimized',
                                                     return_A=True,
                                                     bound_upper=False)
            slope_opt = self.get_slope(
                self.net)[0]  # initial with one node only
        else:
            with torch.no_grad():
                lb, ub, A_dict = self.net.compute_bounds(x=(x, ),
                                                         IBP=False,
                                                         C=None,
                                                         method='backward',
                                                         return_A=True)

        # build a complete A_dict
        self.layer_names = list(A_dict[list(A_dict.keys())[-1]].keys())[2:]
        self.layer_names.sort()

        # update bounds
        print('initial CROWN bounds:', lb, ub)
        primals, mini_inp = None, None
        # mini_inp, primals = self.get_primals(self.A_dict)
        lb, ub, pre_relu_indices = self.get_candidate(
            self.net, lb, lb + 99)  # primals are better upper bounds
        duals = None

        return ub[-1], lb[-1], mini_inp, duals, primals, self.get_relu_mask(
        ), lb, ub, pre_relu_indices, slope_opt
示例#26
0
        [torchvision.transforms.ToTensor(), normalize]))
# For illustration we only use 1 image from dataset
N = 1
n_classes = 10

image = torch.Tensor(test_data.data[:N]).reshape(N, 3, 32, 32)
# Convert to float
image = image.to(torch.float32) / 255.0
if device == 'cuda':
    image = image.cuda()

## Step 3: wrap model with auto_LiRPA
# The second parameter is for constructing the trace of the computational graph, and its content is not important.
# The new "patches" conv_mode provides an more efficient implementation for convolutional neural networks.
model = BoundedModule(model_ori,
                      image,
                      bound_opts={"conv_mode": conv_mode},
                      device=device)

## Step 4: Compute bounds using LiRPA given a perturbation
eps = 0.03
norm = np.inf
ptb = PerturbationLpNorm(norm=norm, eps=eps)
image = BoundedTensor(image, ptb)
# Get model prediction as usual
pred = model(image)

# Compute bounds
torch.cuda.empty_cache()
print('Using {} mode to compute convolution.'.format(conv_mode))
lb, ub = model.compute_bounds(IBP=False, C=None, method='backward')
def main(args):
    config = load_config(args.config)
    logger.info('config: {}'.format(json.dumps(config)))
    set_seed(args.seed or config['seed'])
    model_ori, checkpoint, epoch, best = prepare_model(args, logger, config)
    logger.info('Model structure: \n {}'.format(str(model_ori)))

    custom_ops = {}
    bound_config = config['bound_params']
    batch_size = (args.batch_size or config['batch_size'])
    test_batch_size = args.test_batch_size or batch_size
    dummy_input, train_data, test_data = load_data(args,
                                                   config['data'],
                                                   batch_size,
                                                   test_batch_size,
                                                   aug=not args.no_data_aug)
    lf = args.loss_fusion and args.bound_type == 'CROWN-IBP'
    bound_opts = bound_config['bound_opts']

    model_ori.train()
    model = BoundedModule(model_ori,
                          dummy_input,
                          bound_opts=bound_opts,
                          custom_ops=custom_ops,
                          device=args.device)
    model_ori.to(args.device)

    if checkpoint is None:
        if args.manual_init:
            manual_init(args, model_ori, model, train_data)
        if args.kaiming_init:
            kaiming_init(model_ori)

    if lf:
        model_loss = BoundedModule(
            CrossEntropyWrapper(model_ori),
            (dummy_input.cuda(), torch.zeros(1, dtype=torch.long).cuda()),
            bound_opts=get_bound_opts_lf(bound_opts),
            device=args.device)
        params = list(model_loss.parameters())
    else:
        model_loss = model
        params = list(model_ori.parameters())
    logger.info('Parameter shapes: {}'.format([p.shape for p in params]))
    if args.multi_gpu:
        raise NotImplementedError('Multi-GPU is not supported yet')
        model = BoundDataParallel(model)
        model_loss = BoundDataParallel(model_loss)

    opt = get_optimizer(args, params, checkpoint)
    max_eps = args.eps or bound_config['eps']
    eps_scheduler = get_eps_scheduler(args, max_eps, train_data)
    lr_scheduler = get_lr_scheduler(args, opt)
    if epoch > 0 and not args.plot:
        # skip epochs
        eps_scheduler.train()
        for i in range(epoch):
            # FIXME Can use `last_epoch` argument of lr_scheduler
            lr_scheduler.step()
            eps_scheduler.step_epoch(verbose=False)

    if args.verify:
        logger.info('Inference')
        meter = Train(model,
                      model_ori,
                      10000,
                      test_data,
                      eps_scheduler,
                      None,
                      loss_fusion=False)
        logger.info(meter)
    else:
        timer = 0.0
        for t in range(epoch + 1, args.num_epochs + 1):
            logger.info('Epoch {}, learning rate {}, dir {}'.format(
                t, lr_scheduler.get_last_lr(), args.dir))
            start_time = time.time()
            if lf:
                Train(model_loss,
                      model_ori,
                      t,
                      train_data,
                      eps_scheduler,
                      opt,
                      loss_fusion=True)
            else:
                Train(model, model_ori, t, train_data, eps_scheduler, opt)
            update_state_dict(model_ori, model_loss)
            epoch_time = time.time() - start_time
            timer += epoch_time
            lr_scheduler.step()
            logger.info('Epoch time: {:.4f}, Total time: {:.4f}'.format(
                epoch_time, timer))
            is_best = False
            if t % args.test_interval == 0:
                logger.info('Test without loss fusion')
                with torch.no_grad():
                    meter = Train(model,
                                  model_ori,
                                  t,
                                  test_data,
                                  eps_scheduler,
                                  None,
                                  loss_fusion=False)
                if eps_scheduler.get_eps() == eps_scheduler.get_max_eps():
                    if meter.avg('Rob_Err') < best[1]:
                        is_best, best = True, (meter.avg('Err'),
                                               meter.avg('Rob_Err'), t)
                    logger.info(
                        'Best epoch {}, error {:.4f}, robust error {:.4f}'.
                        format(best[-1], best[0], best[1]))
            save(args,
                 epoch=t,
                 best=best,
                 model=model_ori,
                 opt=opt,
                 is_best=is_best)
示例#28
0
from auto_LiRPA.perturbations import PerturbationLpNorm
input_vec = torch.rand(5, 5)


class mynet(nn.Module):
    def __init__(self):
        super(mynet, self).__init__()
        self.output = nn.sequential(nn.Linear(5, 10), nn.ReLU(),
                                    nn.Linear(10, 3))

    def forward(self, input):
        return self.features(input)


raw_model = mynet()
bound_model = BoundedModule(raw_model, input_vec)
num_actions = 3
batchsize = 5
label = torch.tensor([0, 2, 1, 1, 0])
bnd_state = BoundedTensor(input_vec, PerturbationLpNorm(norm=np.inf, eps=0.1))

c = torch.eye(3).type_as(input_vec)[label].unsqueeze(1) - torch.eye(3).type_as(
    input_vec).unsqueeze(0)
I = (~(label.data.unsqueeze(1) == torch.arange(3).type_as(
    label.data).unsqueeze(0)))
c = (c[I].view(input_vec.size(0), 2, 3))

pred = bound_model(input_vec)
basic_bound, _ = bound_model.compute_bounds(IBP=False, method='backward')
advance_bound, _ = bound_model.compute_bounds(C=c,
                                              IBP=False,
示例#29
0
def main(args):
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    random.seed(args.seed)
    np.random.seed(args.seed)

    ## Step 1: Initial original model as usual, see model details in models/example_feedforward.py and models/example_resnet.py
    if args.data == 'MNIST':
        model_ori = models.Models[args.model](in_ch=1, in_dim=28)
    else:
        model_ori = models.Models[args.model](in_ch=3, in_dim=32)
    if args.load:
        state_dict = torch.load(args.load)['state_dict']
        model_ori.load_state_dict(state_dict)

    ## Step 2: Prepare dataset as usual
    if args.data == 'MNIST':
        dummy_input = torch.randn(1, 1, 28, 28)
        train_data = datasets.MNIST("./data",
                                    train=True,
                                    download=True,
                                    transform=transforms.ToTensor())
        test_data = datasets.MNIST("./data",
                                   train=False,
                                   download=True,
                                   transform=transforms.ToTensor())
    elif args.data == 'CIFAR':
        dummy_input = torch.randn(1, 3, 32, 32)
        normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
                                         std=[0.2023, 0.1994, 0.2010])
        train_data = datasets.CIFAR10("./data",
                                      train=True,
                                      download=True,
                                      transform=transforms.Compose([
                                          transforms.RandomHorizontalFlip(),
                                          transforms.RandomCrop(32, 4),
                                          transforms.ToTensor(), normalize
                                      ]))
        test_data = datasets.CIFAR10("./data",
                                     train=False,
                                     download=True,
                                     transform=transforms.Compose(
                                         [transforms.ToTensor(), normalize]))

    train_data = torch.utils.data.DataLoader(train_data,
                                             batch_size=args.batch_size,
                                             shuffle=True,
                                             pin_memory=True,
                                             num_workers=min(
                                                 multiprocessing.cpu_count(),
                                                 4))
    test_data = torch.utils.data.DataLoader(test_data,
                                            batch_size=args.batch_size,
                                            pin_memory=True,
                                            num_workers=min(
                                                multiprocessing.cpu_count(),
                                                4))
    if args.data == 'MNIST':
        train_data.mean = test_data.mean = torch.tensor([0.0])
        train_data.std = test_data.std = torch.tensor([1.0])
    elif args.data == 'CIFAR':
        train_data.mean = test_data.mean = torch.tensor(
            [0.4914, 0.4822, 0.4465])
        train_data.std = test_data.std = torch.tensor([0.2023, 0.1994, 0.2010])

    ## Step 3: wrap model with auto_LiRPA
    # The second parameter dummy_input is for constructing the trace of the computational graph.
    model = BoundedModule(model_ori,
                          dummy_input,
                          bound_opts={'relu': args.bound_opts},
                          device=args.device)

    ## Step 4 prepare optimizer, epsilon scheduler and learning rate scheduler
    opt = optim.Adam(model.parameters(), lr=args.lr)
    norm = float(args.norm)
    lr_scheduler = optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.5)
    eps_scheduler = eval(args.scheduler_name)(args.eps, args.scheduler_opts)
    print("Model structure: \n", str(model_ori))

    ## Step 5: start training
    if args.verify:
        eps_scheduler = FixedScheduler(args.eps)
        with torch.no_grad():
            Train(model, 1, test_data, eps_scheduler, norm, False, None,
                  args.bound_type)
    else:
        timer = 0.0
        for t in range(1, args.num_epochs + 1):
            if eps_scheduler.reached_max_eps():
                # Only decay learning rate after reaching the maximum eps
                lr_scheduler.step()
            print("Epoch {}, learning rate {}".format(t,
                                                      lr_scheduler.get_lr()))
            start_time = time.time()
            Train(model, t, train_data, eps_scheduler, norm, True, opt,
                  args.bound_type)
            epoch_time = time.time() - start_time
            timer += epoch_time
            print('Epoch time: {:.4f}, Total time: {:.4f}'.format(
                epoch_time, timer))
            print("Evaluating...")
            with torch.no_grad():
                Train(model, t, test_data, eps_scheduler, norm, False, None,
                      args.bound_type)
            torch.save({
                'state_dict': model.state_dict(),
                'epoch': t
            }, args.model)
示例#30
0
 def __init__(self):
     super().__init__()
     self.features = BoundedModule(FeatureExtraction(),
                                   torch.empty((1, 1, 28, 28)))
     self.fc = nn.Linear(256, 10)