def train(x_train, x_test, y_size, x_size, num_channels, latent_space_dim, learning_rate): autoencoder, encoder, decoder, encoder_mu, encoder_log_variance = VAE( y_size, x_size, num_channels, latent_space_dim) autoencoder.summary() autoencoder.compile(optimizer=Adam(lr=learning_rate), loss=loss_func(encoder_mu, encoder_log_variance)) return autoencoder, encoder, decoder
def train(x_train, learning_rate, batch_size, epochs): autoencoder = VAE(input_shape=(28, 28, 1), conv_filters=(32, 64, 64, 64), conv_kernels=(3, 3, 3, 3), conv_strides=(1, 2, 2, 1), latent_space_dim=100) autoencoder.summary() autoencoder.compile(learning_rate) autoencoder.train(x_train, batch_size, epochs) return autoencoder
def train(x_train, learning_rate, batch_size, epochs): autoencoder = VAE( input_shape=(256, 388, 1), conv_filters=(512, 256), #(512, 256, 128, 64, 32) conv_kernels=(3, 3), # (3, 3, 3, 3, 3) conv_strides=(2, 2), # (2, 2, 2, 2, (2, 1)) latent_space_dim=128) autoencoder.summary() autoencoder.compile(learning_rate) autoencoder.train(x_train, batch_size, epochs) return autoencoder