示例#1
0
def mtp_hessian_grad_and_value(fun, x):
    """
    Makes a function that returns MTP, Jacobian and value of a function.

    For a scalar-valued function `fun` the matrix-Tressian-product (MTP) is
    here defined as a function of a matrix `m` corresponding to

        mtp(m) = sum(m[:, :] * t[:, :, :], axis=(-1, -2))

    where `t` is the 'Tressian' of `f = fun(x)` wrt `x` i.e. the 3D array of
    third-order partial derivatives of the scalar-valued function such that

        t[i, j, k] = ∂³f / (∂x[i] ∂x[j] ∂x[k])

    Assumes that the function `fun` broadcasts along the first dimension of the
    input being differentiated with respect to such that a batch of outputs can
    be computed concurrently for a batch of inputs.
    """
    mtp, (hessian, grad,
          val) = make_vjp(lambda x: atuple(hessian_grad_and_value(fun)(x)), x)
    return (
        lambda m: mtp((m, vspace(grad).zeros(), vspace(val).zeros())),
        hessian,
        grad,
        val,
    )
示例#2
0
def grad_and_value(fun, x):
    """
    Returns a function that returns both gradient and value of a function.
    """
    vjp, val = _make_vjp(fun, x)
    if not vspace(val).size == 1:
        raise TypeError("grad_and_value only applies to real scalar-output "
                        "functions.")
    return vjp(vspace(val).ones()), val
示例#3
0
 def grad_and_value(fun, x):
     """
     Returns a function that returns both gradient and value of a function.
     """
     vjp, val = make_vjp(fun, x)
     if not vspace(val).size == 1:
         raise TypeError("grad_and_value only applies to real scalar-output"
                         " functions.")
     return vjp(vspace(val).ones()), val
示例#4
0
    def _grad_with_forward(fun, x):
        """This function is a replica of ``autograd.grad``, with the only
        difference being that it returns both the gradient *and* the forward pass
        value."""
        vjp, ans = _make_vjp(fun, x)

        if not vspace(ans).size == 1:
            raise TypeError(
                "Grad only applies to real scalar-output functions. "
                "Try jacobian, elementwise_grad or holomorphic_grad.")

        grad_value = vjp(vspace(ans).ones())
        return grad_value, ans
示例#5
0
文件: utils.py 项目: ecat/adbs
def jacobian_pkl(fun, x):
    vjp, ans = _make_vjp(fun, x)
    ans_vspace = vspace(ans)
    jacobian_shape = ans_vspace.shape + vspace(x).shape
    grads = map(vjp, ans_vspace.standard_basis())

    grads_out = np.stack(grads)
    if (np.prod(jacobian_shape) == np.prod(grads_out.shape)):
        return np.reshape(grads_out, jacobian_shape)
    else:
        my_jacobian_shape = ans_vspace.shape + vspace(x).shape + (
            2, )  # 2 to support real/im
        re_im_grads = np.squeeze(np.reshape(grads_out, my_jacobian_shape))
        out = re_im_grads[..., 0] + 1j * re_im_grads[..., 1]

        return out
示例#6
0
def jacobian_and_value(fun, x):
    """
    Returns a function that returns both the Jacobian and value of a function.

    Assumes that the function `fun` broadcasts along the first dimension of the
    input being differentiated with respect to such that a batch of outputs can
    be computed concurrently for a batch of inputs.
    """
    val = fun(x)
    v_vspace = vspace(val)
    x_vspace = vspace(x)
    x_rep = np.tile(x, (v_vspace.size, ) + (1, ) * x_vspace.ndim)
    vjp_rep, _ = _make_vjp(fun, x_rep)
    jacobian_shape = v_vspace.shape + x_vspace.shape
    basis_vectors = np.array([b for b in v_vspace.standard_basis()])
    jacobian = vjp_rep(basis_vectors)
    return np.reshape(jacobian, jacobian_shape), val
示例#7
0
def get_shape(x):
    """ Gets the shape of x, even if it is not an array """
    if isinstance(x, float) or isinstance(x, int):
        return (1, )
    elif isinstance(x, tuple) or isinstance(x, list):
        return (len(x), )
    else:
        return vspace(x).shape
示例#8
0
文件: fft.py 项目: HIPS/autograd
def irfft_grad(get_args, rfft_fun, ans, x, *args, **kwargs):
    axes, gs, norm = get_args(x, *args, **kwargs)
    vs = vspace(x)
    gvs = vspace(ans)
    check_no_repeated_axes(axes)
    if gs is None: gs = [gvs.shape[i] for i in axes]
    check_even_shape(gs)

    # gs is the full fft shape
    # s is the compressed shape
    s = list(gs)
    s[-1] = s[-1] // 2 + 1
    def vjp(g):
        r = match_complex(x, truncate_pad((rfft_fun(g,  *args, **kwargs)), vs.shape))
        fac = make_rfft_factors(axes, vs.shape, s, gs, norm)
        r = anp.conj(r) * fac
        return r
    return vjp
示例#9
0
    def jacobian_and_value(fun, x):
        """
        Returns a function that returns both the Jacobian and value of a
        function.

        Assumes that the function `fun` broadcasts along the first dimension of
        the input being differentiated with respect to such that a batch of
        outputs can be computed concurrently for a batch of inputs.
        """
        val = fun(x)
        v_vspace = vspace(val)
        x_vspace = vspace(x)
        x_rep = np.tile(x, (v_vspace.size,) + (1,) * x_vspace.ndim)
        vjp_rep, _ = make_vjp(fun, x_rep)
        jacobian_shape = v_vspace.shape + x_vspace.shape
        basis_vectors = np.array([b for b in v_vspace.standard_basis()])
        jacobian = vjp_rep(basis_vectors)
        return np.reshape(jacobian, jacobian_shape), val
示例#10
0
文件: fft.py 项目: HIPS/autograd
def rfft_grad(get_args, irfft_fun, ans, x, *args, **kwargs):
    axes, s, norm = get_args(x, *args, **kwargs)
    vs = vspace(x)
    gvs = vspace(ans)
    check_no_repeated_axes(axes)
    if s is None: s = [vs.shape[i] for i in axes]
    check_even_shape(s)

    # s is the full fft shape
    # gs is the compressed shape
    gs = list(s)
    gs[-1] = gs[-1] // 2  + 1
    fac = make_rfft_factors(axes, gvs.shape, gs, s, norm)
    def vjp(g):
        g = anp.conj(g / fac)
        r = match_complex(x, truncate_pad((irfft_fun(g, *args, **kwargs)), vs.shape))
        return r
    return vjp
示例#11
0
def fixed_point_vjp(ans, f, a, x0, distance, tol):
    def rev_iter(params):
        a, x_star, x_star_bar = params
        vjp_x, _ = make_vjp(f(a))(x_star)
        vs = vspace(x_star)
        return lambda g: vs.add(vjp_x(g), x_star_bar)
    vjp_a, _ = make_vjp(lambda x, y: f(x)(y))(a, ans)
    return lambda g: vjp_a(fixed_point(rev_iter, tuple((a, ans, g)),
                           vspace(x0).zeros(), distance, tol))
示例#12
0
def jacobian_forward(fun, x):
    """ Compute jacobian of fun with respect to x using forward mode differentiation"""
    jvp = make_jvp(fun, x)
    # ans = fun(x)
    val_grad = map(lambda b: jvp(b), vspace(x).standard_basis())
    vals, grads = zip(*val_grad)
    ans = np.zeros((list(vals)[0].size,))  # fake answer so that dont have to compute it twice
    m, n = _jac_shape(x, ans)
    return np.reshape(np.stack(grads), (m, n)).T
示例#13
0
def hessian_grad_and_value(fun, x):
    """
    Returns a function that returns Hessian, gradient and value of a function.

    Assumes that the function `fun` broadcasts along the first dimension of the
    input being differentiated with respect to such that a batch of outputs can
    be computed concurrently for a batch of inputs.
    """
    def grad_fun(x):
        vjp, val = _make_vjp(fun, x)
        return vjp(vspace(val).ones()), val

    x_vspace = vspace(x)
    x_rep = np.tile(x, (x_vspace.size, ) + (1, ) * x_vspace.ndim)
    vjp_grad, (grad, val) = _make_vjp(lambda x: atuple(grad_fun(x)), x_rep)
    hessian_shape = x_vspace.shape + x_vspace.shape
    basis_vectors = np.array([b for b in x_vspace.standard_basis()])
    hessian = vjp_grad((basis_vectors, vspace(val).zeros()))
    return np.reshape(hessian, hessian_shape), grad[0], val[0]
示例#14
0
    def hessian_grad_and_value(fun, x):
        """
        Returns a function that returns the Hessian, gradient and value of a
        function.

        Assumes that the function `fun` broadcasts along the first dimension of
        the input being differentiated with respect to such that a batch of
        outputs can be computed concurrently for a batch of inputs.
        """
        def grad_fun(x):
            vjp, val = make_vjp(fun, x)
            return vjp(vspace(val).ones()), val
        x_vspace = vspace(x)
        x_rep = np.tile(x, (x_vspace.size,) + (1,) * x_vspace.ndim)
        vjp_grad, (grad, val) = make_vjp(lambda x: atuple(grad_fun(x)), x_rep)
        hessian_shape = x_vspace.shape + x_vspace.shape
        basis_vectors = np.array([b for b in x_vspace.standard_basis()])
        hessian = vjp_grad((basis_vectors, vspace(val).zeros()))
        return np.reshape(hessian, hessian_shape), grad[0], val[0]
def view_update(data, view_fun):
    view_vjp, item = make_vjp(view_fun)(data)
    item_vs = vspace(item)

    def update(new_item):
        assert item_vs == vspace(new_item), \
            "Please ensure new_item shape and dtype match the data view."
        diff = view_vjp(
            item_vs.add(new_item, item_vs.scalar_mul(item, -np.uint64(1))))
        return vspace(data).add(data, diff)

    return item, update
示例#16
0
文件: fft.py 项目: yhjflower/tgcn
def irfft_grad(get_args, rfft_fun, ans, x, *args, **kwargs):
    axes, gs, norm = get_args(x, *args, **kwargs)
    vs = vspace(x)
    gvs = vspace(ans)
    check_no_repeated_axes(axes)
    if gs is None: gs = [gvs.shape[i] for i in axes]
    check_even_shape(gs)

    # gs is the full fft shape
    # s is the compressed shape
    s = list(gs)
    s[-1] = s[-1] // 2 + 1

    def vjp(g):
        r = match_complex(
            x, truncate_pad((rfft_fun(g, *args, **kwargs)), vs.shape))
        fac = make_rfft_factors(axes, vs.shape, s, gs, norm)
        r = anp.conj(r) * fac
        return r

    return vjp
示例#17
0
文件: fft.py 项目: yhjflower/tgcn
def rfft_grad(get_args, irfft_fun, ans, x, *args, **kwargs):
    axes, s, norm = get_args(x, *args, **kwargs)
    vs = vspace(x)
    gvs = vspace(ans)
    check_no_repeated_axes(axes)
    if s is None: s = [vs.shape[i] for i in axes]
    check_even_shape(s)

    # s is the full fft shape
    # gs is the compressed shape
    gs = list(s)
    gs[-1] = gs[-1] // 2 + 1
    fac = make_rfft_factors(axes, gvs.shape, gs, s, norm)

    def vjp(g):
        g = anp.conj(g / fac)
        r = match_complex(
            x, truncate_pad((irfft_fun(g, *args, **kwargs)), vs.shape))
        return r

    return vjp
示例#18
0
def ans_jacobian(function, argnum):
    """
    Get the value and the jacobian of a function.
    This differential operator follows autograd's jacobian implementation:
    https://github.com/HIPS/autograd/blob/master/autograd/differential_operators.py

    Args:
    function :: any -> any - the function to differentiate
    argnum :: int - the argument number to differentiate with respect to

    Returns:
    ans_jacobian any -> tuple(any :: any, jacobian :: ndarray) - a function
        that returns the value of `function` and the jacobian
        of `function` evaluated at a given argument of `function`
    """
    vjp, ans = _make_vjp(function, argnum)
    ans_vspace = vspace(ans)
    jacobian_shape = ans_vspace.shape + vspace(argnum).shape
    grads = list(map(vjp, ans_vspace.standard_basis()))
    jacobian = np.reshape(np.stack(grads), jacobian_shape)
    return ans, jacobian
示例#19
0
def ans_jacobian(function, argnum):
    """
    Get the value and the jacobian of a function.
    This differential operator supports numpy and pycuda arrays.

    Args:
    function :: any -> any - the function to differentiate
    argnum :: int - the argument number to differentiate with respect to

    Returns:
    ans_jacobian any -> tuple(any :: any, jacobian :: ndarray) - a function
        that returns the value of `function` and the jacobian
        of `function` evaluated at a given argument of `function`
    """
    vjp, ans = _make_vjp(function, argnum)
    ans_vspace = vspace(ans)
    jacobian_shape = ans_vspace.shape + vspace(argnum).shape
    grads = list(map(vjp, ans_vspace.standard_basis()))
    if isinstance(grads[0], np.ndarray):
        jacobian = np.reshape(np.stack(grads), jacobian_shape)
    elif isinstance(grads[0], GPUArray):
        jacobian =  stack_gpu(grads).reshape(jacobian_shape)
    
    return ans, jacobian
示例#20
0
    def mtp_hessian_grad_and_value(fun, x):
        """
        Returns a function that returns MTP, Jacobian and value of a function.

        For a scalar-valued function `fun` the matrix-Tressian-product (MTP) is
        here defined as a function of a matrix `m` corresponding to

            mtp(m) = sum(m[:, :] * t[:, :, :], axis=(-1, -2))

        where `t` is the 'Tressian' of `f = fun(x)` wrt `x` i.e. the rank-3
        tensor of third-order partial derivatives of the scalar-valued function
        such that

            t[i, j, k] = d**3 f / (dx[i] * dx[j] * dx[k])

        Assumes that the function `fun` broadcasts along the first dimension of
        the input being differentiated with respect to such that a batch of
        outputs can be computed concurrently for a batch of inputs.
        """
        mtp, (hessian, grad, val) = make_vjp(
            lambda x: atuple(hessian_grad_and_value(fun)(x)), x)
        return (
            lambda m: mtp((m, vspace(grad).zeros(), vspace(val).zeros())),
            hessian, grad, val)
示例#21
0
 def __new__(self, name, base, dic):
     cls = type.__new__(container_mateclass, name, base, dic)
     cls.register(_np.ndarray)
     for type_ in [
             float, _np.float64, _np.float32, _np.float16, complex,
             _np.complex64, _np.complex128
     ]:
         cls.register(type_)
     for method_name in nondiff_methods + diff_methods:
         setattr(cls, method_name, anp.__dict__[method_name])
     setattr(cls, 'flatten', anp.__dict__['ravel'])
     defvjp(func(cls.__getitem__),
            lambda ans, A, idx: lambda g: untake(g, idx, vspace(A)))
     defjvp(func(cls.__getitem__), 'same')
     defjvp(untake, 'same')
     setattr(cls, 'reshape', wrapped_reshape)
     return cls
示例#22
0
def mhp_jacobian_and_value(fun, x):
    """
    Returns a function that returns MHP, Jacobian and value of a function.

    For a vector-valued function `fun` the matrix-Hessian-product (MHP) is here
    defined as a function of a matrix `m` corresponding to

        mhp(m) = sum(m[:, :] * h[:, :, :], axis=(-1, -2))

    where `h` is the vector-Hessian of `f = fun(x)` wrt `x` i.e. the rank-3
    tensor of second-order partial derivatives of the vector-valued function,
    such that

        h[k, i, j] = (d**2 f[i]) / (dx[j] * dx[k])

    Assumes that the function `fun` broadcasts along the first dimension of the
    input being differentiated with respect to such that a batch of outputs can
    be computed concurrently for a batch of inputs.
    """
    mhp, (jacob, val) = _make_vjp(lambda x: atuple(jacobian_and_value(fun)(x)),
                                  x)
    return lambda m: mhp((m, vspace(val).zeros())), jacob, val
示例#23
0
    def mhp_jacobian_and_value(fun, x):
        """
        Returns a function that returns MHP, Jacobian and value of a function.

        For a vector-valued function `fun` the matrix-Hessian-product (MHP) is
        here defined as a function of a matrix `m` corresponding to

            mhp(m) = sum(m[:, :] * h[:, :, :], axis=(-1, -2))

        where `h` is the vector-Hessian of `f = fun(x)` wrt `x` i.e. the rank-3
        tensor of second-order partial derivatives of the vector-valued
        function, such that

            h[k, i, j] = (d**2 f[i]) / (dx[j] * dx[k])

        Assumes that the function `fun` broadcasts along the first dimension of
        the input being differentiated with respect to such that a batch of
        outputs can be computed concurrently for a batch of inputs.
        """
        mhp, (jacob, val) = make_vjp(
            lambda x: atuple(jacobian_and_value(fun)(x)), x)
        return lambda m: mhp((m, vspace(val).zeros())), jacob, val
示例#24
0
@primitive
def untake(x, idx, vs):
    if isinstance(idx, list) and (len(idx) == 0
                                  or not isinstance(idx[0], slice)):
        idx = onp.array(idx, dtype='int64')

    def mut_add(A):
        onp.add.at(A, idx, x)
        return A

    return SparseObject(vs, mut_add)


defvjp(func(ArrayBox.__getitem__),
       lambda ans, A, idx: lambda g: untake(g, idx, vspace(A)))
defvjp(untake, lambda ans, x, idx, _: lambda g: g[idx])


def _unpad(array, width):
    if anp.isscalar(width):
        width = [[width, width]]
    elif anp.shape(width) == (1, ):
        width = [anp.concatenate((width, width))]
    elif anp.shape(width) == (2, ):
        width = [width]
    if anp.shape(width)[0] == 1:
        width = anp.repeat(width, anp.ndim(array), 0)
    idxs = tuple(slice(l, -u or None) for l, u in width)
    return array[idxs]
示例#25
0
 def grad_fun(x):
     vjp, val = make_vjp(fun, x)
     return vjp(vspace(val).ones()), val
示例#26
0
 def grad_fun(x):
     vjp, val = _make_vjp(fun, x)
     return vjp(vspace(val).ones()), val
示例#27
0
from . import numpy_wrapper as anp
from .numpy_vjps import (untake, balanced_eq, match_complex, replace_zero,
                         dot_adjoint_0, dot_adjoint_1, tensordot_adjoint_0,
                         tensordot_adjoint_1, nograd_functions)
from autograd.extend import (defjvp, defjvp_argnum, def_linear, vspace, JVPNode,
                             register_notrace)
from ..util import func
from .numpy_boxes import ArrayBox

for fun in nograd_functions:
    register_notrace(JVPNode, fun)

defjvp(func(ArrayBox.__getitem__), 'same')
defjvp(untake, 'same')

defjvp_argnum(anp.array_from_args, lambda argnum, g, ans, args, kwargs: untake(g, argnum-2, vspace(ans)))
defjvp(anp._array_from_scalar_or_array, None, None,
       lambda g, ans, args, kwargs, _: anp._array_from_scalar_or_array(args, kwargs, g))

# ----- Functions that are constant w.r.t. continuous inputs -----
defjvp(anp.nan_to_num, lambda g, ans, x: anp.where(anp.isfinite(x), g, 0.))

# ----- Binary ufuncs (linear) -----
def_linear(anp.multiply)

# ----- Binary ufuncs -----
defjvp(anp.add,        lambda g, ans, x, y : broadcast(g, ans),
                       lambda g, ans, x, y : broadcast(g, ans))
defjvp(anp.subtract,   lambda g, ans, x, y : broadcast(g, ans),
                       lambda g, ans, x, y : broadcast(-g, ans))
defjvp(anp.divide,     'same',
示例#28
0
                         dot_adjoint_0, dot_adjoint_1, tensordot_adjoint_0,
                         tensordot_adjoint_1, nograd_functions)
from autograd.extend import (defjvp, defjvp_argnum, def_linear, vspace,
                             JVPNode, register_notrace)
from ..util import func
from .numpy_boxes import ArrayBox

for fun in nograd_functions:
    register_notrace(JVPNode, fun)

defjvp(func(ArrayBox.__getitem__), 'same')
defjvp(untake, 'same')

defjvp_argnum(
    anp.array_from_args,
    lambda argnum, g, ans, args, kwargs: untake(g, argnum - 2, vspace(ans)))
defjvp(
    anp._array_from_scalar_or_array, None, None,
    lambda g, ans, args, kwargs, _: anp._array_from_scalar_or_array(
        args, kwargs, g))

# ----- Functions that are constant w.r.t. continuous inputs -----
defjvp(anp.nan_to_num, lambda g, ans, x: anp.where(anp.isfinite(x), g, 0.))

# ----- Binary ufuncs (linear) -----
def_linear(anp.multiply)

# ----- Binary ufuncs -----
defjvp(anp.add, lambda g, ans, x, y: broadcast(g, ans),
       lambda g, ans, x, y: broadcast(g, ans))
defjvp(anp.subtract, lambda g, ans, x, y: broadcast(g, ans),
示例#29
0
def jacobian_reverse(fun, x):
    """ Compute jacobian of fun with respect to x using reverse mode differentiation"""
    vjp, ans = make_vjp(fun, x)
    grads = map(vjp, vspace(ans).standard_basis())
    m, n = _jac_shape(x, ans)
    return npa.reshape(npa.stack(grads), (n, m))
示例#30
0
 def rev_iter(params):
     a, x_star, x_star_bar = params
     vjp_x, _ = make_vjp(f(a))(x_star)
     vs = vspace(x_star)
     return lambda g: vs.add(vjp_x(g), x_star_bar)
示例#31
0
文件: fft.py 项目: HIPS/autograd
        irfft_grad(get_fftn_args, rfftn, *args, **kwargs))

defvjp(fftshift,  lambda ans, x, axes=None : lambda g:
                 match_complex(x, anp.conj(ifftshift(anp.conj(g), axes))))
defvjp(ifftshift, lambda ans, x, axes=None : lambda g:
                 match_complex(x, anp.conj(fftshift(anp.conj(g), axes))))

@primitive
def truncate_pad(x, shape):
    # truncate/pad x to have the appropriate shape
    slices = [slice(n) for n in shape]
    pads = list(zip(anp.zeros(len(shape), dtype=int),
               anp.maximum(0, anp.array(shape) - anp.array(x.shape))))
    return anp.pad(x, pads, 'constant')[slices]
defvjp(truncate_pad, lambda ans, x, shape: lambda g:
       match_complex(x, truncate_pad(g, vspace(x).shape)))

## TODO: could be made less stringent, to fail only when repeated axis has different values of s
def check_no_repeated_axes(axes):
    axes_set = set(axes)
    if len(axes) != len(axes_set):
        raise NotImplementedError("FFT gradient for repeated axes not implemented.")

def check_even_shape(shape):
    if shape[-1] % 2 != 0:
        raise NotImplementedError("Real FFT gradient for odd lengthed last axes is not implemented.")

def get_fft_args(a, d=None, axis=-1, norm=None, *args, **kwargs):
    axes = [axis]
    if d is not None: d = [d]
    return axes, d, norm
示例#32
0
文件: fft.py 项目: yhjflower/tgcn
def fft_grad(get_args, fft_fun, ans, x, *args, **kwargs):
    axes, s, norm = get_args(x, *args, **kwargs)
    check_no_repeated_axes(axes)
    vs = vspace(x)
    return lambda g: match_complex(
        x, truncate_pad(fft_fun(g, *args, **kwargs), vs.shape))
示例#33
0
def balanced_eq(x, z, y):
    return (x == z) / (1.0 + (x == y))

def replace_zero(x, val):
    return anp.where(x, x, val)

# ----- extra functions used internally  -----

def array_from_args_gradmaker(argnum, ans, args, kwargs):
    return lambda g: g[argnum-2]
defvjp_argnum(anp.array_from_args, array_from_args_gradmaker)

def array_from_scalar_or_array_gradmaker(ans, array_args, array_kwargs, scarray):
    ndmin = array_kwargs.get('ndmin', 0)
    scarray_ndim = anp.ndim(scarray)
    if ndmin > scarray_ndim:
        return lambda g: anp.squeeze(g, axis=tuple(range(ndmin - scarray_ndim)))
    else:
        return lambda g: g
defvjp(anp._array_from_scalar_or_array, array_from_scalar_or_array_gradmaker, argnums=(2,3))

@primitive
def untake(x, idx, vs):
    def mut_add(A):
        onp.add.at(A, idx, x)
        return A
    return SparseObject(vs, mut_add)
defvjp(func(ArrayBox.__getitem__), lambda ans, A, idx: lambda g: untake(g, idx, vspace(A)))
defvjp(untake, lambda ans, x, idx, _: lambda g: g[idx])
示例#34
0
def elementwise_grad(fun, x, initial_grad=None):
    vjp, ans = _make_vjp(fun, x)
    if vspace(ans).iscomplex:
        raise TypeError(
            "Elementwise_grad only applies to real-output functions.")
    return vjp(vspace(ans).ones() if initial_grad is None else initial_grad)
示例#35
0
    else:
        return lambda g: g


defvjp(
    acp._array_from_scalar_or_array,
    array_from_scalar_or_array_gradmaker,
    argnums=(2, 3),
)


@primitive
def untake(x, idx, vs):
    def mut_add(A):
        # in numpy codebase, this used to be:
        # onp.add.at(A, idx, x)
        # according to https://docs-cupy.chainer.org/en/stable/reference/ufunc.html?highlight=ufunc.at,
        # scatter_add is the correct function to use.
        # TODO: PR into cupy codebase the ability to use scatter_add with float64?
        ocpx.scatter_add(A, idx, x)
        return A

    return SparseObject(vs, mut_add)


defvjp(
    func(container.__getitem__),
    lambda ans, A, idx: lambda g: untake(g, idx, vspace(A)),  # noqa: E501
)
defvjp(untake, lambda ans, x, idx, _: lambda g: g[idx])
示例#36
0
文件: fft.py 项目: HIPS/autograd
def fft_grad(get_args, fft_fun, ans, x, *args, **kwargs):
    axes, s, norm = get_args(x, *args, **kwargs)
    check_no_repeated_axes(axes)
    vs = vspace(x)
    return lambda g: match_complex(x, truncate_pad(fft_fun(g, *args, **kwargs), vs.shape))
示例#37
0
def array_from_scalar_or_array_gradmaker(ans, array_args, array_kwargs, scarray):
    ndmin = array_kwargs.get('ndmin', 0)
    scarray_ndim = anp.ndim(scarray)
    if ndmin > scarray_ndim:
        return lambda g: anp.squeeze(g, axis=tuple(range(ndmin - scarray_ndim)))
    else:
        return lambda g: g
defvjp(anp._array_from_scalar_or_array, array_from_scalar_or_array_gradmaker, argnums=(2,3))

@primitive
def untake(x, idx, vs):
    def mut_add(A):
        onp.add.at(A, idx, x)
        return A
    return SparseObject(vs, mut_add)
defvjp(func(ArrayBox.__getitem__), lambda ans, A, idx: lambda g: untake(g, idx, vspace(A)))
defvjp(untake, lambda ans, x, idx, _: lambda g: g[idx])

def _unpad(array, width):
    if anp.isscalar(width):
        width = [[width, width]]
    elif anp.shape(width) == (1,):
        width = [anp.concatenate((width, width))]
    elif anp.shape(width) == (2,):
        width = [width]
    if anp.shape(width)[0] == 1:
        width = anp.repeat(width, anp.ndim(array), 0)
    idxs = [slice(l, -u or None) for l, u in width]
    return array[idxs]

def pad_vjp(ans, array, pad_width, mode, **kwargs):
示例#38
0
文件: fft.py 项目: yhjflower/tgcn
@primitive
def truncate_pad(x, shape):
    # truncate/pad x to have the appropriate shape
    slices = [slice(n) for n in shape]
    pads = list(
        zip(anp.zeros(len(shape), dtype=int),
            anp.maximum(0,
                        anp.array(shape) - anp.array(x.shape))))
    return anp.pad(x, pads, 'constant')[slices]


defvjp(
    truncate_pad, lambda ans, x, shape: lambda g: match_complex(
        x, truncate_pad(g,
                        vspace(x).shape)))


## TODO: could be made less stringent, to fail only when repeated axis has different values of s
def check_no_repeated_axes(axes):
    axes_set = set(axes)
    if len(axes) != len(axes_set):
        raise NotImplementedError(
            "FFT gradient for repeated axes not implemented.")


def check_even_shape(shape):
    if shape[-1] % 2 != 0:
        raise NotImplementedError(
            "Real FFT gradient for odd lengthed last axes is not implemented.")