def test_cat_to_num_get_config_has_all_attributes(): block = blocks.CategoricalToNumerical() config = block.get_config() assert test_utils.get_func_args( blocks.CategoricalToNumerical.__init__).issubset(config.keys())
def test_cat_to_num_build_return_tensor(): block = blocks.CategoricalToNumerical() block.column_names = ["a"] block.column_types = {"a": "num"} outputs = block.build(keras_tuner.HyperParameters(), tf.keras.Input(shape=(1, ), dtype=tf.string)) assert len(nest.flatten(outputs)) == 1
def test_cat_to_num_build_return_tensor(): block = blocks.CategoricalToNumerical() block.column_names = ['a'] block.column_types = {'a': 'num'} outputs = block.build(kerastuner.HyperParameters(), tf.keras.Input(shape=(1, ), dtype=tf.string)) assert len(nest.flatten(outputs)) == 1 assert isinstance(nest.flatten(outputs)[0], tf.Tensor)
def test_cat_to_num_deserialize_to_cat_to_num(): serialized_block = blocks.serialize(blocks.CategoricalToNumerical()) block = blocks.deserialize(serialized_block) assert isinstance(block, blocks.CategoricalToNumerical)