示例#1
0
def test_lgbm_classifier(tmp_dir):
    x_train = np.random.rand(11, 32)
    y_train = np.array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                        [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                        [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
                        [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
                        [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
                        [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
                        [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
                        [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
                        [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                        [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
                        [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]])

    input_node = ak.Input()
    output_node = input_node
    output_node = preprocessor.LightGBMClassifier()(output_node)
    output_node = block.IdentityBlock()(output_node)
    output_node = head.EmptyHead(loss='categorical_crossentropy',
                                 metrics=['accuracy'])(output_node)

    auto_model = ak.GraphAutoModel(input_node,
                                   output_node,
                                   directory=tmp_dir,
                                   max_trials=1)
    auto_model.fit(x_train,
                   y_train,
                   epochs=1,
                   validation_data=(x_train, y_train))
    result = auto_model.predict(x_train)
    auto_model.tuner.get_best_models()[0].summary()
    assert result.shape == (11, 10)
示例#2
0
 def build(self, hp, inputs=None):
     input_node = nest.flatten(inputs)[0]
     output_node = input_node
     output_node = preprocessor.LightGBMClassifier()(output_node)
     output_node = block.IdentityBlock()(output_node)
     output_node = head.EmptyHead(loss=self.loss,
                                  metrics=[self.metrics])(output_node)
     return output_node
示例#3
0
 def build(self, hp, inputs=None):
     input_node = nest.flatten(inputs)[0]
     output_node = input_node
     output_node = preprocessor.LightGBMRegressor()(output_node)
     output_node = block.IdentityBlock()(output_node)
     output_node = head.EmptyHead(loss='mean_squared_error',
                                  metrics=[self.metrics])(output_node)
     return output_node
示例#4
0
def test_lgbm_regressor(tmp_dir):
    x_train = np.random.rand(11, 32)
    y_train = np.array([1.1, 2.1, 4.2, 0.3, 2.4, 8.5, 7.3, 8.4, 9.4, 4.3])
    input_node = ak.Input()
    output_node = input_node
    output_node = preprocessor.LightGBMRegressor()(output_node)
    output_node = block.IdentityBlock()(output_node)
    output_node = head.EmptyHead(loss='mean_squared_error',
                                 metrics=['mean_squared_error'])(output_node)

    auto_model = ak.GraphAutoModel(input_node,
                                   output_node,
                                   directory=tmp_dir,
                                   max_trials=1)
    auto_model.fit(x_train,
                   y_train,
                   epochs=1,
                   validation_data=(x_train, y_train))
    result = auto_model.predict(x_train)
    auto_model.tuner.get_best_models()[0].summary()
    assert result.shape == (11, 1)