示例#1
0
def test_functional_api(tmp_dir):
    # Prepare the data.
    num_instances = 20
    (image_x, train_y), (test_x, test_y) = mnist.load_data()
    (text_x, train_y), (test_x, test_y) = common.imdb_raw()
    (structured_data_x, train_y), (test_x, test_y) = common.dataframe_numpy()

    image_x = image_x[:num_instances]
    text_x = text_x[:num_instances]
    structured_data_x = structured_data_x[:num_instances]
    classification_y = common.generate_one_hot_labels(
        num_instances=num_instances, num_classes=3)
    regression_y = common.generate_data(num_instances=num_instances,
                                        shape=(1, ))

    # Build model and train.
    image_input = ak.ImageInput()
    output = ak.Normalization()(image_input)
    output = ak.ImageAugmentation()(output)
    outputs1 = ak.ResNetBlock(version='next')(image_input)
    outputs2 = ak.XceptionBlock()(image_input)
    image_output = ak.Merge()((outputs1, outputs2))

    structured_data_input = ak.StructuredDataInput(
        column_names=common.COLUMN_NAMES_FROM_CSV,
        column_types=common.COLUMN_TYPES_FROM_CSV)
    structured_data_output = ak.FeatureEngineering()(structured_data_input)
    structured_data_output = ak.DenseBlock()(structured_data_output)

    text_input = ak.TextInput()
    outputs1 = ak.TextToIntSequence()(text_input)
    outputs1 = ak.EmbeddingBlock()(outputs1)
    outputs1 = ak.ConvBlock(separable=True)(outputs1)
    outputs1 = ak.SpatialReduction()(outputs1)
    outputs2 = ak.TextToNgramVector()(text_input)
    outputs2 = ak.DenseBlock()(outputs2)
    text_output = ak.Merge()((outputs1, outputs2))

    merged_outputs = ak.Merge()(
        (structured_data_output, image_output, text_output))

    regression_outputs = ak.RegressionHead()(merged_outputs)
    classification_outputs = ak.ClassificationHead()(merged_outputs)
    automodel = ak.GraphAutoModel(
        inputs=[image_input, text_input, structured_data_input],
        directory=tmp_dir,
        outputs=[regression_outputs, classification_outputs],
        max_trials=2,
        seed=common.SEED)

    automodel.fit((image_x, text_x, structured_data_x),
                  (regression_y, classification_y),
                  validation_split=0.2,
                  epochs=2)
示例#2
0
def functional_api():
    max_features = 20000
    max_words = 400
    (x_train, y_train), (x_test, y_test) = tf.keras.datasets.imdb.load_data(
        num_words=max_features, index_from=3)
    x_train = tf.keras.preprocessing.sequence.pad_sequences(x_train,
                                                            maxlen=max_words)
    x_test = tf.keras.preprocessing.sequence.pad_sequences(x_test,
                                                           maxlen=max_words)
    print(x_train.dtype)
    print(x_train[:10])
    input_node = ak.Input()
    output_node = input_node
    output_node = ak.EmbeddingBlock(max_features=max_features)(output_node)
    output_node = ak.ConvBlock()(output_node)
    output_node = ak.SpatialReduction()(output_node)
    output_node = ak.DenseBlock()(output_node)
    output_node = ak.ClassificationHead()(output_node)
    clf = ak.AutoModel(input_node, output_node, seed=5, max_trials=3)
    clf.fit(x_train, y_train, validation_split=0.2)
    return clf.evaluate(x_test, y_test)