示例#1
0
文件: cnn.py 项目: quantumpacket/igel
 def train(self):
     train_data = ak.image_dataset_from_directory(self.data_path)
     self.model = self._create_model()
     logger.info(f"executing a {self.model.__class__.__name__} algorithm...")
     logger.info(f"Training started...")
     self.model.fit(train_data, **self.training_args)
     logger.info("finished training!")
     self.save_desc_file()
     saved = self.save_model()
     if saved:
         logger.info(f"model saved successfully")
示例#2
0
import autokeras as ak
import tensorflow as tf
import os
from pathlib import Path

HERE = Path(__file__).parent.absolute()

train_data = ak.image_dataset_from_directory(HERE.joinpath(
    'traindata', 'digits'),
                                             image_size=(120, 120),
                                             batch_size=64)

clf = ak.ImageClassifier(overwrite=True,
                         max_trials=1,
                         project_name='digitsTrainer')
clf.fit(train_data, epochs=5)
print(clf.evaluate(train_data))

clf.export_model().save("digits", save_format="tf")

# TODO: use tesseract to verify images for traindata and train on many more digits
示例#3
0
  sunflowers/
  tulips/
```

We can split the data into training and testing as we load them.
"""

batch_size = 32
img_height = 180
img_width = 180

train_data = ak.image_dataset_from_directory(
    data_dir,
    # Use 20% data as testing data.
    validation_split=0.2,
    subset="training",
    # Set seed to ensure the same split when loading testing data.
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size,
)

test_data = ak.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size,
)
"""
Then we just do one quick demo of AutoKeras to make sure the dataset works.
示例#4
0
文件: cnn.py 项目: quantumpacket/igel
 def predict(self):
     trained_model = self.load_model()
     pred_data = ak.image_dataset_from_directory(self.data_path)
     trained_model.predict(pred_data)
示例#5
0
文件: cnn.py 项目: quantumpacket/igel
 def evaluate(self):
     trained_model = self.load_model()
     test_data = ak.image_dataset_from_directory(self.data_path)
     trained_model.evaluate(test_data)