示例#1
0
def run():
    x_train, y_train, x_test, y_test = load_images()
    # After loading train and evaluate classifier.
    clf = ImageClassifier(verbose=True, augment=False)
    clf.fit(x_train, y_train, time_limit=12 * 60 * 60)
    clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
    y = clf.evaluate(x_test, y_test)
    print(y * 100)
示例#2
0
	def prepare(self, path, x_train, y_train):
		global clf
		# TODO: find a better way to make our own Searcher
		resume = False
		if os.path.isdir(self.path):
			resume = True
			print(f"Resuming")

		# TODO: Fix resume after debug
		clf = self.clf = ImageClassifier(verbose=True, augment=False, path=path, resume=False, search_type=ObservableSearcher)
示例#3
0
def train(auto_keras_config_id):
	print('auto_keras_config object: ' + str(auto_keras_config_id))
	auto_keras_config = AutoKerasConfig.objects.get(id=auto_keras_config_id)

	auto_keras_config.status = 'in_progress'
	auto_keras_config.save()
	# Storing save location for models

	try:
		dump_file = os.path.join(AUTO_ML_MODELS_PATH, 'auto_keras' + str(datetime.datetime.now()) + '.h5')

		print('Files to load: ' + auto_keras_config.training_data_filename)

		x = numpy.load(os.path.join(AUTO_ML_DATA_PATH, auto_keras_config.training_data_filename))
		y = numpy.load(os.path.join(AUTO_ML_DATA_PATH, auto_keras_config.training_labels_filename))
		# x, y = load_ml_data(auto_keras_config.training_data_filename, auto_keras_config.training_labels_filename, False, auto_keras_config.make_one_hot_encoding_task_binary)

		# TODO this might not work on low ram machines work, but array has to be 3d
		if auto_keras_config.preprocessing_object.input_data_type == 'wav':
			array4d = []
			i=0
			for datapoint in x:
				print(i)
				x_3d = datapoint.reshape((172,128,10)).transpose()
				array4d.append(x_3d)
				i+=1
			x = numpy.array(array4d)


		clf = ImageClassifier(verbose=auto_keras_config.verbose)

		start = time.time()
		clf.fit(x, y, time_limit=auto_keras_config.time_limit)
		end = time.time()

		#clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
		#y = clf.evaluate(x_test, y_test)

		print("Fitting Success!!!")

		# storing the best performer
		clf.export_autokeras_model(dump_file)
		print('saved!')
#
		auto_keras_config.training_time = round(end-start, 2)
		auto_keras_config.status = 'success'
		auto_keras_config.model_path = dump_file
		auto_keras_config.save()
		print('Status final ' + auto_keras_config.status)

	except Exception as e:
		end = time.time()
		if 'start' in locals():
			print('failed after:' + str(end-start))
			auto_keras_config.training_time = round(end-start, 2)

		auto_keras_config.status = 'fail'
		auto_keras_config.additional_remarks = e
		auto_keras_config.save()
示例#4
0
文件: load.py 项目: Saiuz/autokeras
def run():
    x_train, y_train, x_test, y_test = load_images()
    # After loading train and evaluate classifier.
    clf = ImageClassifier(verbose=True, augment=False)
    clf.fit(x_train, y_train, time_limit=12 * 60 * 60)
    clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
    y = clf.evaluate(x_test, y_test)
    print(y * 100)
示例#5
0
import os

from keras.datasets import mnist

from autokeras import ImageClassifier
from autokeras import pickle_from_file

# Customer temp dir by your own
TEMP_DIR = '/tmp/autokeras_U8KEOQ'
model_file_name = os.path.join(TEMP_DIR, 'test_autokeras_model.pkl')

if __name__ == '__main__':
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape + (1, ))
    x_test = x_test.reshape(x_test.shape + (1, ))
    clf = ImageClassifier(verbose=True,
                          augment=False,
                          path=TEMP_DIR,
                          resume=True)
    clf.fit(x_train, y_train, time_limit=30 * 60)
    clf.final_fit(x_train, y_train, x_test, y_test)
    clf.export_autokeras_model(model_file_name)
    model = pickle_from_file(model_file_name)
    results = model.evaluate(x_test, y_test)
    print(results)
示例#6
0
import numpy as np
from scipy.stats import norm
import matplotlib.pyplot as plt
from autokeras import ImageClassifier

clf = ImageClassifier(searcher_type='bayesian',
                      path='/Users/haifeng/cifar10_backup',
                      resume=True)
searcher = clf.load_searcher()
kernel_matrix = searcher.gpr.kernel_matrix
history = searcher.history
diff = np.zeros(kernel_matrix.shape)
for i, item1 in enumerate(history):
    for j, item2 in enumerate(history):
        e1 = item1['accuracy']
        e2 = item2['accuracy']
        diff[i][j] = 1 - abs(e1 - e2)

m1 = np.zeros(kernel_matrix.shape)
m2 = np.zeros(kernel_matrix.shape)
m3 = np.zeros(kernel_matrix.shape)
for i in range(47):
    for j in range(47):
        m1[i][j] = np.where(
            np.array(sorted(kernel_matrix.flatten())) == kernel_matrix[i]
            [j])[0][0]
        m2[i][j] = np.where(
            np.array(sorted(diff.flatten())) == diff[i][j])[0][0]
        m1[i][j] = norm.ppf(m1[i][j] / (47.0 * 47.0))
        m2[i][j] = norm.ppf(m2[i][j] / (47.0 * 47.0))
        m3[i][j] = abs(m1[i][j] - m2[i][j])
示例#7
0
# scale the raw pixel intensities to the range [0, 1]
trainX = np.array(trainX, dtype="float16") / 255.0
testX = np.array(testX, dtype="float16") / 255.0
trainY = np.array(trainY)
testY = np.array(testY)
print("[INFO] data  matrix: {:.2f}MB".format(trainX.nbytes / (1024 * 1000.0)))
print("[INFO] data  shape : {}".format(trainX.shape))
print("[INFO] label shape : {}".format(trainY.shape))

# trainX = trainX.reshape(trainX.shape + (1,))
# testX = testX.reshape(testX.shape + (1,))

print(trainX.shape, trainY.shape, testX.shape, testY.shape)

clf = ImageClassifier(path='autokeras_output/', verbose=True, augment=False)
clf.fit(trainX, trainY, time_limit=12 * 60 * 60)
clf.final_fit(trainX, trainY, testX, testY, retrain=True)
y = clf.evaluate(testX, testY)

print(y * 100)

joblib.dump(clf, 'wfc3_autokeras_model.joblib.save')
'''
from keras.datasets import mnist
from autokeras import ImageClassifier

if __name__ == '__main__':
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape + (1,))
    x_test = x_test.reshape(x_test.shape + (1,))
示例#8
0
from keras.datasets import mnist
from autokeras import ImageClassifier

# loadning mnist from keras
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# each image has to 3D: 2 coordinates, 1 value (gray scale)
X_train = X_train.reshape(X_train.shape + (1,))
X_test = X_test.reshape(X_test.shape + (1,))

clf = ImageClassifier(verbose=True, augment=True)
clf.fit(X_train, y_train, time_limit=(1*60*60))
from keras.datasets import mnist
from autokeras import ImageClassifier
import tensorflow

if __name__ == '__main__':
    print(tensorflow.__version__)
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape + (1, ))
    x_test = x_test.reshape(x_test.shape + (1, ))
    clf = ImageClassifier(verbose=True, augment=False)
    clf.fit(x_train, y_train, time_limit=2 * 60)
    # clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
    y = clf.evaluate(x_test, y_test)
    print(y * 100)
示例#10
0
文件: mnist.py 项目: MaxKinny/NAS-GCN
from keras.datasets import mnist
from autokeras import ImageClassifier
from matplotlib import pyplot as plt

if __name__ == '__main__':
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape + (1, ))
    x_test = x_test.reshape(x_test.shape + (1, ))
    # Strange!!
    # nest line actually calls:
    # NetworkModule class from:
    # anaconda3/envs/auto-keras/lib/python3.6/site-packages/autokeras/net_module.py
    # cos code: "from autokeras import ImageClassifier"
    # when you execute it, it will call autokeras from anaconda env's site-packages
    # however the grammar checker and the hyper-linker will track it from the local package!!!
    # they are different!!!!!
    clf = ImageClassifier(verbose=True, augment=False)
    clf.fit(x_train, y_train, time_limit=30 * 6000)
    clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
    y = clf.evaluate(x_test, y_test)
    plt.imshow(x_train[0, :, :, 0], cmap=plt.cm.bone)
    print(y * 100)
示例#11
0
import os

from keras.datasets import mnist

from autokeras import ImageClassifier
from autokeras.utils import pickle_from_file

# Customer temp dir by your own
TEMP_DIR = '/tmp/autokeras_U8KEOQ'
model_file_name = os.path.join(TEMP_DIR, 'test_autokeras_model.pkl')

if __name__ == '__main__':
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape + (1,))
    x_test = x_test.reshape(x_test.shape + (1,))
    clf = ImageClassifier(verbose=True, augment=False, path=TEMP_DIR, resume=True)
    clf.fit(x_train, y_train, time_limit=30 * 60)
    clf.final_fit(x_train, y_train, x_test, y_test)
    clf.export_autokeras_model(model_file_name)
    model = pickle_from_file(model_file_name)
    results = model.evaluate(x_test, y_test)
    print(results)
示例#12
0
print(y_train)
for i in range(5):
    n = i*20
    img = x_train[n,:,:,:].reshape((28,28))
    print(y_train[n])
    plt.figure()
    plt.imshow(img,cmap='gray')
    plt.xticks([])
    plt.yticks([])
plt.show()
'''

if __name__ == '__main__':
    start = time.time()
    # 模型构建
    model = ImageClassifier(verbose=True)
    # 搜索网络模型
    model.fit(x_train, y_train, time_limit=1 * 60)
    # 验证最优模型
    model.final_fit(x_train, y_train, x_train, y_train, retrain=True)
    # 给出评估结果
    score = model.evaluate(x_train, y_train)
    # 识别结果
    y_predict = model.predict(x_train)
    # y_pred = np.argmax(y_predict,axis=1)
    # 精确度
    accuracy = accuracy_score(y_train, y_predict)
    # 打印出score与accuracy
    print('score:', score, '  accuracy:', accuracy)
    print(y_predict, y_train)
    model_dir = r'./trainer/new_auto_learn_Model.h5'
示例#13
0
from keras.datasets import mnist
from autokeras import ImageClassifier
from autokeras.constant import Constant

if __name__ == '__main__':
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape + (1, ))
    x_test = x_test.reshape(x_test.shape + (1, ))
    clf = ImageClassifier(verbose=True, augment=False)
    clf.fit(x_train, y_train, time_limit=30 * 60)
    clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
    y = clf.evaluate(x_test, y_test)

    print(y * 100)
    clf.export_autokeras_model('my_model-1.h5')
示例#14
0
from autokeras import ImageClassifier
from tensorflow.keras.datasets import fashion_mnist as fm

(X_train, y_train), (X_test, y_test) = fm.load_data()
X_train = X_train.astype('float32') / 255.0
X_test = X_test.astype('float32') / 255.0

EPOCHS = 10

classifier = ImageClassifier(seed=9, max_trials=10)
classifier.fit(X_train, y_train, epochs=EPOCHS, verbose=2)
print(classifier.evaluate(X_test, y_test))
示例#15
0
import os
# path = '/Users/arron/autokeras/'
# os.chdir(path)

from keras.datasets import mnist
# from autokeras.image.image_supervised import ImageClassifier
from autokeras import ImageClassifier

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape + (1,))
x_test = x_test.reshape(x_test.shape + (1,))

# 1. 将 verbose 指定为 True 意味着搜索过程将打印在屏幕上供我们查看
clf = ImageClassifier(verbose=True)
# 2. 在 fit 方法中,time_limit 参数是指以秒为单位的搜索时间限制
clf.fit(x_train, y_train, time_limit=12 * 60 * 60)
# 3. final_fit 是模型找到最佳模型架构后进行的最后一次训练。将 retrain 参数指定为 True 意味着将重新初 始化模型的权重
clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
# 4. 在评估模型在测试集上的效果后,print(y) 将显示模型准确率
y = clf.evaluate(x_test, y_test)
print(y)

# export the model
clf.export_keras_model('my_model.h5')
#
# from keras.models import load_model
# model = load_model('my_model.h5')
#
# from keras.utils import plot_model
# plot_model(model, to_file='my_model.png')
示例#16
0
from keras.datasets import mnist
from autokeras import ImageClassifier

if __name__ == '__main__':
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape + (1,))
    x_test = x_test.reshape(x_test.shape + (1,))

    clf = ImageClassifier(verbose=True, augment=False)
    clf.fit(x_train, y_train, time_limit=12 * 60 * 60)
    clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
    y = clf.evaluate(x_test, y_test)
    print(y * 100)
示例#17
0


"""

#Fixed the error, the excel file contained the DS_Store file
#Loading the dataset
x_train, y_train = load_image_dataset(csv_file_path=train_csv,
                                      images_path=train_dir)
x_test, y_test = load_image_dataset(csv_file_path=test_csv,
                                    images_path=test_dir)

x_train = x_train.reshape(x_train.shape + (1, ))
x_test = x_test.reshape(x_test.shape + (1, ))

clf = ImageClassifier(verbose=True)
#Chose to set the training time to 3600s for testing purposes
clf.fit(x_train, y_train, time_limit=(60 * 60 * 9.5))
clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
#y gives us the accuracy of our structure
y = clf.evaluate(x_test, y_test)
print(y)

#Verfying if the images are corrupt
for filename in listdir(dir_path):
    if filename.endswith('.jpg'):
        try:
            img = image.open(dir_path + "/" + filename)  # open the image file
            img.verify()  # verify that it is, in fact an image
        except (IOError, SyntaxError) as e:
            print('Bad file:', filename)
示例#18
0
                test_label_list.append(plant_folder)
    print("[INFO] Image loading completed")

except Exception as e:
    print(f"Error : {e}")

y_test_ = label_gener.transform(test_label_list)
y_test = [[i] for i in y_test_]
y_test = np.array(y_test)

x_test = np.array(test_image_list) / 225.0  #scailing 0~1
#______________________MODEL DEF____________________________

clf = ImageClassifier(verbose=True,
                      path='auto-keras/',
                      searcher_args={'trainer_args': {
                          'max_iter_num': 30
                      }})
clf.fit(x_train, y_train, time_limit=2 * 60 * 60)  # hour

print(clf.get_best_model_id())
searcher = clf.load_searcher()
print(searcher.history)  #view all model result

# FINAL train with best model
clf.final_fit(x_train,
              y_train,
              x_test,
              y_test,
              retrain=False,
              trainer_args={'max_iter_num': 3})
示例#19
0
def init(path, x_train, y_train):
    global clf
    # TODO: find a better way to make our own Searcher

    clf = ImageClassifier(verbose=True, augment=False, path=path, resume=True)
    searcher = ObservableSearcher(clf, x_train.shape[1:], y_train) 
import numpy as np
from autokeras import ImageClassifier
from tests.common import clean_dir

if __name__ == '__main__':
    x_train = np.random.rand(2, 28, 28, 1)
    y_train = np.random.rand(2)
    x_test = np.random.rand(1, 28, 28, 1)
    y_test = np.random.rand(1)
    trainer_args = {'max_iter_num': 0, 'batch_size': 128, 'augment': False}
    clf = ImageClassifier(path='tests/resources/temp',
                          verbose=True,
                          searcher_args={'trainer_args': trainer_args})

    clf.fit(x_train, y_train, time_limit=30)
    clf.load_searcher().export_json('./test.json')
    clean_dir('tests/resources/temp')