def masked_interferometer_fit_for_tracer(self, tracer, hyper_background_noise): return fit.FitInterferometer( masked_interferometer=self.masked_dataset, tracer=tracer, hyper_background_noise=hyper_background_noise, )
def masked_interferometer_fit_for_tracer(self, tracer, hyper_background_noise): return fit.FitInterferometer( masked_interferometer=self.masked_dataset, tracer=tracer, hyper_background_noise=hyper_background_noise, settings_pixelization=self.settings.settings_pixelization, settings_inversion=self.settings.settings_inversion, )
def masked_interferometer_fit_for_tracer(self, tracer, hyper_background_noise, use_hyper_scalings=True): return fit.FitInterferometer( masked_interferometer=self.masked_dataset, tracer=tracer, hyper_background_noise=hyper_background_noise, use_hyper_scaling=use_hyper_scalings, settings_pixelization=self.settings.settings_pixelization, settings_inversion=self.settings.settings_inversion, preloads=self.preloads, )
def stochastic_log_evidences_for_instance(self, instance): instance = self.associate_hyper_images(instance=instance) tracer = self.tracer_for_instance(instance=instance) if not tracer.has_pixelization: return None if not isinstance( tracer.pixelizations_of_planes[-1], pix.VoronoiBrightnessImage ): return None hyper_background_noise = self.hyper_background_noise_for_instance( instance=instance ) settings_pixelization = ( self.settings.settings_pixelization.settings_with_is_stochastic_true() ) log_evidences = [] for i in range(self.settings.settings_lens.stochastic_samples): try: log_evidence = fit.FitInterferometer( masked_interferometer=self.masked_dataset, tracer=tracer, hyper_background_noise=hyper_background_noise, settings_pixelization=settings_pixelization, settings_inversion=self.settings.settings_inversion, ).log_evidence except ( PixelizationException, InversionException, GridException, OverflowError, ) as e: log_evidence = None if log_evidence is not None: log_evidences.append(log_evidence) return log_evidences