print("Any NaN in train target df 'crime_test' ?", y_test.isnull().values.any()) print() print() print("scoring:", scoring) print() X_test_imputed = eu.reorder_ohencoded_X_test_columns( X_train_imputed, X_test_imputed) sltt['arrays'] = (X_train_imputed, X_test_imputed, y_train, y_test) # end custom feat. engineering print("Evaluation, training") print() # you already did encoding auto_feat_eng_data = eu.auto_X_encoding(sltt, random_state=seed, encode=False) print() ev.perform_classic_cv_evaluation_and_calibration(auto_feat_eng_data, scoring, Y_type, labels=labels, random_state=seed)
print("X_train -- first row:", X_train.values[0]) print("y_train shape: ", y_train.shape) print() print("X_test shape: ", X_test.shape) print("X_test -- first row:", X_test.values[0]) print("y_test shape: ", y_test.shape) print() print(y_train[:3]) print() print("scoring:", scoring) print() auto_feat_eng_data = eu.auto_X_encoding(sltt, seed) print() eva.select_evaluation_strategy(auto_feat_eng_data, target, 0.2, odf, scoring, Y_type, labels=classes, d_name=d_name, random_state=seed, learn=learnm) input("=== [End Of Program] Enter key to continue... \n")