示例#1
0
    print("Any NaN in train target df 'crime_test' ?",
          y_test.isnull().values.any())
    print()

    print()
    print("scoring:", scoring)
    print()

    X_test_imputed = eu.reorder_ohencoded_X_test_columns(
        X_train_imputed, X_test_imputed)

    sltt['arrays'] = (X_train_imputed, X_test_imputed, y_train, y_test)

    # end custom feat. engineering

    print("Evaluation, training")
    print()

    # you already did encoding
    auto_feat_eng_data = eu.auto_X_encoding(sltt,
                                            random_state=seed,
                                            encode=False)

    print()

    ev.perform_classic_cv_evaluation_and_calibration(auto_feat_eng_data,
                                                     scoring,
                                                     Y_type,
                                                     labels=labels,
                                                     random_state=seed)
    print("X_train -- first row:", X_train.values[0])
    print("y_train shape: ", y_train.shape)
    print()

    print("X_test shape: ", X_test.shape)
    print("X_test -- first row:", X_test.values[0])
    print("y_test shape: ", y_test.shape)
    print()

    print(y_train[:3])

    print()
    print("scoring:", scoring)
    print()

    auto_feat_eng_data = eu.auto_X_encoding(sltt, seed)

    print()

    eva.select_evaluation_strategy(auto_feat_eng_data,
                                   target,
                                   0.2,
                                   odf,
                                   scoring,
                                   Y_type,
                                   labels=classes,
                                   d_name=d_name,
                                   random_state=seed,
                                   learn=learnm)

    input("=== [End Of Program] Enter key to continue... \n")