示例#1
0
def process_single_ds(uat):

    with open(str(uat) + '.txt', "w+") as f:
        pass
    all_automata = atma.parse_anml_file(anml_path[uat])
    all_automata.remove_ors()
    automatas = all_automata.get_connected_components_as_automatas()
    number_of_autoamtas = len(automatas)

    if len(automatas) > number_of_autoamtas:
        #automatas = random.sample(automatas, number_of_autoamtas)
        automatas = automatas[:number_of_autoamtas]

    number_of_autoamtas = len(automatas)
    total_bit_len = []
    total_bit_hist = {}

    for atm_idx, atm in enumerate(automatas):

        print 'processing {0} automata {1} from {2}'.format(
            uat, atm_idx + 1, number_of_autoamtas)

        bc_sym_dict = get_equivalent_symbols([atm], replace=True)
        bc_bits_len = int(math.ceil(math.log(max(bc_sym_dict.values()), 2)))

        total_bit_len.append(bc_bits_len)
        total_bit_hist[bc_bits_len] = total_bit_hist.get(bc_bits_len, 0) + 1

        #with open(str(uat) + '.txt', "a") as f:
        #   print >> f, "compressed bit length: " + str(bc_bits_len)

    with open('compression_ratio_summary.txt', "a") as f:
        fcntl.flock(f, fcntl.LOCK_EX | fcntl.LOCK_NB)
        print >> f, "----------------------------------------------------------------"
        print >> f, str(uat)
        print >> f, "AVG:" + str(
            sum(total_bit_len) / float(number_of_autoamtas))
        print >> f, "STD:" + str(np.std(total_bit_len))
        print >> f, "---------Histogram---------"
        for k, v in total_bit_hist.iteritems():
            print >> f, "bit len {0} = {1}".format(k, v)
        print >> f, "----------------------------------------------------------------"
        fcntl.flock(f, fcntl.LOCK_UN)
示例#2
0
        strided_automatas, bit_size,  = [], []
        for atm_idx, atm in enumerate(automatas):
            if (uat, atm_idx) in exempts:
                continue

            print atm.get_summary()
            atm = atma.automata_network.get_bit_automaton(atm=atm, original_bit_width=hd_gen.HDL_Gen.get_bit_len(atm.max_val_dim))
            atm = atma.automata_network.get_strided_automata2(atm=atm, stride_value=bit_stride_val, is_scalar=True,
                                                              base_value=2, add_residual=False)

            with open('nine_bit_snort.pkl', 'wb') as f:
                pickle.dump(atm, f, pickle.HIGHEST_PROTOCOL)


            if use_compression:
                bc_sym_dict = get_equivalent_symbols([atm], replace=True)

            translation_list = []

            print atm.get_summary(logo="9bit atm info")
            atm = atm.get_single_stride_graph()
            print atm.get_summary(logo="done st1")
            atm = atm.get_single_stride_graph()
            print atm.get_summary(logo="done st2")
            atm = atm.get_single_stride_graph()
            print atm.get_summary(logo="done st3")

            if atm.is_homogeneous is False:
                atm.make_homogenous()

            minimize_automata(atm)
示例#3
0
def process_single_ds(uat):
    all_automata = atma.parse_anml_file(anml_path[uat])
    all_automata.remove_ors()
    automatas = all_automata.get_connected_components_as_automatas()

    if len(automatas) > number_of_autoamtas:
        #automatas = random.sample(automatas, number_of_autoamtas)
        automatas = automatas[:number_of_autoamtas]

    number_of_stages = math.ceil(len(automatas) / float(automata_per_stage))
    atms_per_stage = int(math.ceil(len(automatas) / float(number_of_stages)))

    for stride_val in range(1):

        hdl_apth = hd_gen.get_hdl_folder_name(
            prefix="comptest" + str(uat),
            number_of_atms=len(automatas),
            stride_value=stride_val,
            before_match_reg=before_match_reg,
            after_match_reg=after_match_reg,
            ste_type=ste_type,
            use_bram=use_bram,
            use_compression=use_compression,
            compression_depth=compression_depth)

        generator_ins = hd_gen.HDL_Gen(
            path=hdl_apth,
            before_match_reg=before_match_reg,
            after_match_reg=after_match_reg,
            ste_type=ste_type,
            total_input_len=hd_gen.HDL_Gen.get_bit_len(
                all_automata.max_val_dim) * pow(2, stride_val))

        for atm_idx, atm in enumerate(automatas):
            if (uat, atm_idx) in exempts:
                continue

            print 'processing {0} stride{3} automata {1} from {2}'.format(
                uat, atm_idx + 1, len(automatas), stride_val)

            bc_bits_len = 8
            if use_compression:
                bc_sym_dict = get_equivalent_symbols([atm], replace=True)
                bc_bits_len = int(
                    math.ceil(math.log(max(bc_sym_dict.values()), 2)))

            translation_list = []

            for s in range(stride_val):
                atm = atm.get_single_stride_graph()
                if use_compression and s < compression_depth:
                    new_translation = get_equivalent_symbols([atm],
                                                             replace=True)
                    translation_list.append(new_translation)

            if atm.is_homogeneous is False:
                atm.make_homogenous()

            minimize_automata(atm)

            #lut_bram_dic = {n: (1, 2) for n in atm.nodes}
            generator_ins.register_automata(
                atm=atm,
                use_compression=use_compression,
                byte_trans_map=bc_sym_dict if use_compression else None)

            if use_compression:
                generator_ins.register_compressor(
                    [atm.id],
                    byte_trans_map=bc_sym_dict,
                    translation_list=translation_list)

            if (atm_idx + 1) % atms_per_stage == 0:
                generator_ins.register_stage_pending(use_bram=use_bram)

        generator_ins.finilize()
示例#4
0
#strided_b_atm.draw_graph('homogeneous.svg', draw_edge_label=True)


minimize_automata(strided_b_atm, same_residuals_only=False)
print strided_b_atm.get_summary(logo='minimized')
strided_b_atm.draw_graph('minimized.svg')

compare_input(True, True, False, None, org_atm, strided_b_atm)
exit(0)

for s in automatas:

    stride_dict_list = []
    for i in range(4):

        symbol_dict, symbol_dictionary_list = get_equivalent_symbols([s], replace=True)

        if i == 0:
            initial_dic = symbol_dict
            initial_bits = int(math.ceil(math.log(max(initial_dic.values()), 2)))
            width_list=[initial_bits]
            test_compressor(original_width=8,
                            byte_trans_map=initial_dic,
                            byte_map_width=initial_bits,
                            translation_list=[],
                            idx=0,
                            width_list=[],
                            initial_width=initial_bits,
                            output_width=initial_bits)

        else:
示例#5
0
            before_match_reg=before_match_reg,
            after_match_reg=after_match_reg,
            ste_type=ste_type,
            total_input_len=hd_gen.HDL_Gen.get_bit_len(
                all_automata.max_val_dim) * pow(2, stride_val))

        for atm_idx, atm in enumerate(automatas):
            if (uat, atm_idx) in exempts:
                continue

            print 'processing {0} stride{3} automata {1} from {2}'.format(
                uat, atm_idx, len(automatas), stride_val)

            bc_bits_len = 8
            if use_compression:
                bc_sym_dict = get_equivalent_symbols([atm], replace=True)
                bc_bits_len = int(
                    math.ceil(math.log(max(bc_sym_dict.values()), 2)))

            translation_list = []

            for s in range(stride_val):
                atm = atm.get_single_stride_graph()
                if use_compression and s < compression_depth:
                    new_translation = get_equivalent_symbols([atm],
                                                             replace=True)
                    translation_list.append(new_translation)

            if atm.is_homogeneous is False:
                atm.make_homogenous()