示例#1
0
def docker_commands():
    # FIXME: doesn't allow to build docker images for custom versions of h2o
    return """
RUN {here}/setup.sh
EXPOSE 54321
EXPOSE 54322
""".format(here=dir_of(__file__, True))
示例#2
0
def docker_commands(*args, setup_cmd=None):
    return """
RUN {here}/setup.sh {args}
{cmd}
EXPOSE 54321
EXPOSE 54322
""".format(here=dir_of(__file__, True),
           args=' '.join(as_cmd_args(*args)),
           cmd="RUN {}".format(setup_cmd) if setup_cmd is not None else "")
示例#3
0
def run(dataset: Dataset, config: TaskConfig):
    #TODO: use rpy2 instead? not necessary here though as the call is very simple
    log.info("\n**** Random Forest (R) ****\n")

    is_classification = config.type == 'classification'
    if not is_classification:
        raise ValueError('Regression is not supported.')

    here = dir_of(__file__)
    run_cmd(
        r"""Rscript --vanilla -e "source('{script}'); run('{train}', '{test}', '{output}', {cores})" """
        .format(script=os.path.join(here, 'exec.R'),
                train=dataset.train.path,
                test=dataset.test.path,
                output=config.output_predictions_file,
                cores=config.cores))

    log.info("Predictions saved to %s", config.output_predictions_file)
示例#4
0
def run(dataset: Dataset, config: TaskConfig):
    with TmpDir() as tmpdir:
        ds = ns(train=ns(X_enc=os.path.join(tmpdir, 'train.X_enc'),
                         y=os.path.join(tmpdir, 'train.y')),
                test=ns(X_enc=os.path.join(tmpdir, 'test.X_enc'),
                        y=os.path.join(tmpdir, 'test.y')))
        write_csv(dataset.train.X_enc, ds.train.X_enc),
        write_csv(dataset.train.y.reshape(-1, 1), ds.train.y),
        write_csv(dataset.test.X_enc, ds.test.X_enc),
        write_csv(dataset.test.y.reshape(-1, 1), ds.test.y),
        dataset.release()
        config.result_token = str(uuid.uuid1())
        config.result_dir = tmpdir
        params = json_dumps(dict(dataset=ds, config=config), style='compact')
        output = run_cmd('{python} {here}/exec_proc.py'.format(
            python=PYTHON, here=dir_of(__file__)),
                         _input_str_=params)
        out = io.StringIO(output)
        res = ns()
        for line in out:
            li = line.rstrip()
            if li == config.result_token:
                res = json_loads(out.readline(), as_namespace=True)
                break

        def load_data(path):
            return read_csv(path, as_data_frame=False, header=False)

        log.debug("Result from subprocess:\n%s", res)
        save_predictions_to_file(dataset=dataset,
                                 output_file=res.output_file,
                                 probabilities=load_data(res.probabilities)
                                 if res.probabilities is not None else None,
                                 predictions=load_data(
                                     res.predictions).squeeze(),
                                 truth=load_data(res.truth).squeeze(),
                                 target_is_encoded=res.target_is_encoded)
示例#5
0
import io
import logging
import os
import uuid

from automl.benchmark import TaskConfig
from automl.data import Dataset
from automl.datautils import write_csv, read_csv
from automl.results import save_predictions_to_file
from automl.utils import Namespace as ns, TmpDir, dir_of, run_cmd, json_dumps, json_loads

log = logging.getLogger(__name__)


PYTHON = os.path.join(dir_of(__file__), 'venv/bin/python3 -W ignore')
# PYTHON = 'python3 -W ignore'


def run(dataset: Dataset, config: TaskConfig):
    with TmpDir() as tmpdir:
        ds = ns(
            train=ns(
                X_enc=os.path.join(tmpdir, 'train.X_enc'),
                y=os.path.join(tmpdir, 'train.y')
            ),
            test=ns(
                X_enc=os.path.join(tmpdir, 'test.X_enc'),
                y=os.path.join(tmpdir, 'test.y')
            )
        )
        write_csv(dataset.train.X_enc, ds.train.X_enc),
示例#6
0
import os
import signal
import sys
import tempfile as tmp

from automl.benchmark import TaskConfig
from automl.data import Dataset
from automl.datautils import Encoder, impute
from automl.results import save_predictions_to_file
from automl.utils import InterruptTimeout, Timer, dir_of, kill_proc_tree

os.environ['JOBLIB_TEMP_FOLDER'] = tmp.gettempdir()
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['OPENBLAS_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
sys.path.append("{}/lib/hyperopt-sklearn".format(dir_of(__file__)))
from hpsklearn import HyperoptEstimator, any_classifier, any_regressor
from hyperopt import tpe
from sklearn.metrics import accuracy_score, roc_auc_score, f1_score, log_loss, mean_absolute_error, mean_squared_error, mean_squared_log_error, r2_score

log = logging.getLogger(__name__)


def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** Hyperopt-sklearn ****\n")

    is_classification = config.type == 'classification'

    default = lambda: 0
    metrics_to_loss_mapping = dict(
        acc=(default, False),  # lambda y, pred: 1.0 - accuracy_score(y, pred)
示例#7
0
def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** AutoWEKA ****\n")

    is_classification = config.type == 'classification'
    if not is_classification:
        raise ValueError('Regression is not supported.')

    # Mapping of benchmark metrics to Weka metrics
    metrics_mapping = dict(acc='errorRate',
                           auc='areaUnderROC',
                           logloss='kBInformation')
    metric = metrics_mapping[
        config.metric] if config.metric in metrics_mapping else None
    if metric is None:
        raise ValueError("Performance metric {} not supported.".format(
            config.metric))

    train_file = dataset.train.path
    test_file = dataset.test.path
    # Weka to requires target as the last attribute
    if dataset.target.index != len(dataset.predictors):
        train_file = reorder_dataset(dataset.train.path,
                                     target_src=dataset.target.index)
        test_file = reorder_dataset(dataset.test.path,
                                    target_src=dataset.target.index)

    training_params = {
        k: v
        for k, v in config.framework_params.items() if not k.startswith('_')
    }
    parallelRuns = config.framework_params.get('_parallelRuns', config.cores)

    memLimit = config.framework_params.get('_memLimit', 'auto')
    if memLimit == 'auto':
        memLimit = max(
            min(config.max_mem_size_mb,
                math.ceil(config.max_mem_size_mb / parallelRuns)),
            1024)  # AutoWEKA default memLimit
    log.info("Using %sMB memory per run on %s parallel runs.", memLimit,
             parallelRuns)

    f = split_path(config.output_predictions_file)
    f.extension = '.weka_pred.csv'
    weka_file = path_from_split(f)
    cmd_root = "java -cp {here}/lib/autoweka/autoweka.jar weka.classifiers.meta.AutoWEKAClassifier ".format(
        here=dir_of(__file__))
    cmd_params = dict(
        t='"{}"'.format(train_file),
        T='"{}"'.format(test_file),
        memLimit=memLimit,
        classifications=
        '"weka.classifiers.evaluation.output.prediction.CSV -distribution -file \\\"{}\\\""'
        .format(weka_file),
        timeLimit=int(config.max_runtime_seconds / 60),
        parallelRuns=parallelRuns,
        metric=metric,
        seed=config.seed % (1 << 16),  # weka accepts only int16 as seeds
        **training_params)
    cmd = cmd_root + ' '.join(
        ["-{} {}".format(k, v) for k, v in cmd_params.items()])
    with Timer() as training:
        run_cmd(cmd)

    # if target values are not sorted alphabetically in the ARFF file, then class probabilities are returned in the original order
    # interestingly, other frameworks seem to always sort the target values first
    # that's why we need to specify the probabilities labels here: sorting+formatting is done in saving function
    probabilities_labels = dataset.target.values
    if not os.path.exists(weka_file):
        raise NoResultError("AutoWEKA failed producing any prediction.")
    with open(weka_file, 'r') as weka_file:
        probabilities = []
        predictions = []
        truth = []
        for line in weka_file.readlines()[1:-1]:
            inst, actual, predicted, error, *distribution = line.split(',')
            pred_probabilities = [
                pred_probability.replace('*', '').replace('\n', '')
                for pred_probability in distribution
            ]
            _, pred = predicted.split(':')
            _, tru = actual.split(':')
            probabilities.append(pred_probabilities)
            predictions.append(pred)
            truth.append(tru)

    save_predictions_to_file(dataset=dataset,
                             output_file=config.output_predictions_file,
                             probabilities=probabilities,
                             predictions=predictions,
                             truth=truth,
                             probabilities_labels=probabilities_labels)

    return dict(training_duration=training.duration)
示例#8
0
def docker_commands(*args, **kwargs):
    return """
RUN {here}/setup.sh
""".format(here=dir_of(__file__, True))
示例#9
0
import logging
import sys

from automl.benchmark import TaskConfig
from automl.data import Dataset
from automl.datautils import Encoder, impute
from automl.results import save_predictions_to_file
from automl.utils import Timer, dir_of

sys.path.append("{}/libs/oboe/automl".format(dir_of(__file__)))
from auto_learner import AutoLearner

log = logging.getLogger(__name__)


def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** Oboe ****\n")

    is_classification = config.type == 'classification'
    if not is_classification:
        # regression currently fails (as of 29.01.2019: still under development state by oboe team)
        raise ValueError(
            'Regression is not yet supported (under development).')

    X_train, X_test = impute(dataset.train.X_enc, dataset.test.X_enc)
    y_train, y_test = dataset.train.y_enc, dataset.test.y_enc

    log.info('Running oboe with a maximum time of {}s on {} cores.'.format(
        config.max_runtime_seconds, config.cores))
    log.warning(
        'We completely ignore the advice to optimize towards metric: {}.'.