def load_squares(n=1): """ Squares dataset by Adrien PAVAO. """ if n==1: data = apd.read_csv(os.path.join(CURRENT_PATH, 'squares1.csv'), header=None) elif n==2: data = apd.read_csv(os.path.join(CURRENT_PATH, 'squares2.csv'), header=None) else: raise Exception('n argument only accepts values 1 and 2') return data
def load_boston(): """ Boston housing dataset. https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html """ print('WARNING: target is missing for test set.') train = apd.read_csv(os.path.join(CURRENT_PATH, 'boston_train.csv')) test = apd.read_csv(os.path.join(CURRENT_PATH, 'boston_test.csv')) data = apd.from_train_test(train, test) data = data.imputation() data.set_class('medv') return data
def load_titanic(): """ Titanic dataset. https://www.kaggle.com/c/titanic """ print('WARNING: target is missing for test set.') train = apd.read_csv(os.path.join(CURRENT_PATH, 'titanic_train.csv')) test = apd.read_csv(os.path.join(CURRENT_PATH, 'titanic_test.csv')) data = apd.from_train_test(train, test) data = data.encoding() data = data.imputation() data.set_class('Survived') return data
def load_seeds(): """ Seeds dataset. https://archive.ics.uci.edu/ml/datasets/seeds """ data = apd.read_csv(os.path.join(CURRENT_PATH, 'seeds.csv')) data.set_class('V8') return data
def load_diabetes(): """ Pima Indians Diabetes Dataset. https://www.kaggle.com/uciml/pima-indians-diabetes-database """ data = apd.read_csv(os.path.join(CURRENT_PATH, 'diabetes.csv'), header=None) data.set_class(8) return data
def load_wine(): """ Wine quality dataset. https://archive.ics.uci.edu/ml/datasets/Wine+Quality """ data = apd.read_csv(os.path.join(CURRENT_PATH, 'wine.csv')) data.set_class('quality') return data
def load_iris(): """ Iris dataset. https://archive.ics.uci.edu/ml/datasets/Iris """ data = apd.read_csv(os.path.join(CURRENT_PATH, 'iris.csv')) data = data.encoding() data.set_class('Species') return data
def load_mushrooms(): """ Mushrooms dataset. https://archive.ics.uci.edu/ml/datasets/mushroom """ data = apd.read_csv(os.path.join(CURRENT_PATH, 'mushrooms.csv')) data = data.encoding() data.set_class('class') return data
def load_adult(): """ Adult Income dataset. https://archive.ics.uci.edu/ml/datasets/Adult """ data = apd.read_csv(os.path.join(CURRENT_PATH, 'adult.csv')) data = data.encoding() data.set_class('income') return data
def load_boston(): """ Large Movie Review Dataset. http://ai.stanford.edu/~amaas/data/sentiment/ """ print('WARNING: NLP functionality is not available yet.') data = apd.read_csv(os.path.join(CURRENT_PATH, 'imdb_dataset.csv')) data = data.encoding() data.set_class('sentiment') return data