def build_psf(xc, yc, sky, H, r_table, slice_scale = None,pad_shape = None): ''' Slice_scale = only return "slice scaled" image ''' try: psf_shape = r_table.shape if pad_shape != None: # Need to make PSF fitting bigger top = int((pad_shape[0] - r_table.shape[0])/2) bottom= int((pad_shape[0] - r_table.shape[0])/2) left = int((pad_shape[1] - r_table.shape[1])/2) right = int((pad_shape[1] - r_table.shape[1])/2) # print((top, bottom), (left, right)) psf_shape = pad_shape r_table = np.pad(r_table, [(top, bottom), (left, right)], mode='constant', constant_values=0) x_rebin = np.arange(0,psf_shape[0]) y_rebin = np.arange(0,psf_shape[1]) xx_rebin,yy_rebin = np.meshgrid(x_rebin,y_rebin) # sigma = fwhm/(2*np.sqrt(2*np.log(2))) if syntax['use_moffat']: core = moffat_2d((xx_rebin,yy_rebin),xc,yc,sky,H,syntax['image_params']).reshape(psf_shape) else: core = gauss_2d((xx_rebin,yy_rebin),xc,yc,sky,H,syntax['image_params']).reshape(psf_shape) residual_rebinned = np.repeat(np.repeat(r_table, regriding_size, axis=0), regriding_size, axis=1) x_roll = scale_roll(xc,int(r_table.shape[1]/2),regriding_size) y_roll = scale_roll(yc,int(r_table.shape[0]/2),regriding_size) residual_roll = np.roll(np.roll(residual_rebinned,y_roll,axis=0),x_roll,axis = 1) residual = rebin(residual_roll,psf_shape) psf = (sky + (H* residual )) + core if np.isnan(np.min(psf)): logger.info(sky,H,np.min(residual),np.min(core)) psf[np.isnan(psf)] = 0 if slice_scale != None: psf = psf[int ( 0.5 * r_table.shape[1] - slice_scale): int(0.5*r_table.shape[1] + slice_scale), int ( 0.5 * r_table.shape[0] - slice_scale): int(0.5*r_table.shape[0] + slice_scale)] except Exception as e: logger.exception(e) psf = np.nan return psf
def do(df,residual,syntax,fwhm): try: from photutils import CircularAperture from photutils import aperture_photometry from scipy.integrate import dblquad import logging logger = logging.getLogger(__name__) xc = syntax['scale'] yc = syntax['scale'] # Integration radius # int_scale = 2*syntax['image_radius'] int_scale = syntax['ap_size'] * fwhm int_range_x = [xc - int_scale , xc + int_scale] int_range_y = [yc - int_scale , yc + int_scale] # Core Gaussian component with height 1 and sigma value sigma if syntax['use_moffat']: core= lambda y, x: moffat_2d((x,y),syntax['scale'],syntax['scale'],0,1,syntax['image_params']) else: core= lambda y, x: gauss_2d((x,y),syntax['scale'],syntax['scale'],0,1,syntax['image_params']) core_int = dblquad(core, int_range_y[0],int_range_y[1],lambda x:int_range_x[0],lambda x:int_range_x[1])[0] # core_int = 2*np.pi*sigma**2 # Aperture Photometry over residual apertures = CircularAperture((syntax['scale'],syntax['scale']), r=int_scale) phot_table = aperture_photometry(residual, apertures,method='subpixel',subpixels=4) phot_table['aperture_sum'].info.format = '%.8g' residual_int = phot_table[0] # Counts from core compoent on PSF syntax['c_counts'] = float(core_int) # Counts from Residual component of PSF syntax['r_counts'] = float(residual_int['aperture_sum']) # Counts in a PSF with fwhm 2 sqrt(2 ln 2) * sigma and height 1 sudo_psf = core_int+float(residual_int['aperture_sum']) psf_int = df.H_psf * sudo_psf psf_int_err = df.H_psf_err * sudo_psf df['psf_counts'] = psf_int.values df['psf_counts_err'] = psf_int_err.values except Exception as e: logger.exception(e) df = np.nan return df,syntax
def residual(p): p = p.valuesdict() return (close_up - moffat_2d( (xx, yy), p['x0'], p['y0'], p['sky'], p['A'], dict( alpha=p['alpha'], beta=p['beta'])).reshape( close_up.shape)).flatten()
def input_model(x, y, A): x = np.arange(0, image.shape[0]) xx, yy = np.meshgrid(x, x) from autophot.packages.functions import gauss_2d, moffat_2d if syntax['use_moffat']: model = moffat_2d( (xx, yy), x, y, 0, A, syntax['image_params']).reshape(image.shape) else: model = gauss_2d( (xx, yy), x, y, 0, A, syntax['image_params']).reshape(image.shape) return model
def residual(p): p = p.valuesdict() return (source - moffat_2d((xx_sl,yy_sl),p['x0'],p['y0'],0,p['A'],dict(alpha=p['alpha'],beta=p['beta'])).reshape(source.shape)).flatten()
def fit(image,sources,residual_table,syntax,fwhm, return_psf_model = False, save_plot = False,show_plot = False, rm_bkg_val = True,hold_pos = False, return_fwhm = False,return_subtraction_image = False, fname = None,no_print = False ): ''' Fitting of PSF model to source ''' import numpy as np import pandas as pd import pathlib import lmfit import logging import matplotlib.pyplot as plt from autophot.packages.functions import gauss_2d,moffat_2d,moffat_fwhm,gauss_sigma2fwhm from matplotlib.gridspec import GridSpec import os dir_path = os.path.dirname(os.path.realpath(__file__)) plt.style.use(os.path.join(dir_path,'autophot.mplstyle')) logger = logging.getLogger(__name__) fitting_radius = int(np.ceil(1.3*fwhm)) regriding_size = int(syntax['regrid_size']) sources = sources residual_table = residual_table def build_psf(xc, yc, sky, H, r_table, slice_scale = None,pad_shape = None): ''' Slice_scale = only return "slice scaled" image ''' try: psf_shape = r_table.shape if pad_shape != None: # Need to make PSF fitting bigger top = int((pad_shape[0] - r_table.shape[0])/2) bottom= int((pad_shape[0] - r_table.shape[0])/2) left = int((pad_shape[1] - r_table.shape[1])/2) right = int((pad_shape[1] - r_table.shape[1])/2) # print((top, bottom), (left, right)) psf_shape = pad_shape r_table = np.pad(r_table, [(top, bottom), (left, right)], mode='constant', constant_values=0) x_rebin = np.arange(0,psf_shape[0]) y_rebin = np.arange(0,psf_shape[1]) xx_rebin,yy_rebin = np.meshgrid(x_rebin,y_rebin) # sigma = fwhm/(2*np.sqrt(2*np.log(2))) if syntax['use_moffat']: core = moffat_2d((xx_rebin,yy_rebin),xc,yc,sky,H,syntax['image_params']).reshape(psf_shape) else: core = gauss_2d((xx_rebin,yy_rebin),xc,yc,sky,H,syntax['image_params']).reshape(psf_shape) residual_rebinned = np.repeat(np.repeat(r_table, regriding_size, axis=0), regriding_size, axis=1) x_roll = scale_roll(xc,int(r_table.shape[1]/2),regriding_size) y_roll = scale_roll(yc,int(r_table.shape[0]/2),regriding_size) residual_roll = np.roll(np.roll(residual_rebinned,y_roll,axis=0),x_roll,axis = 1) residual = rebin(residual_roll,psf_shape) psf = (sky + (H* residual )) + core if np.isnan(np.min(psf)): logger.info(sky,H,np.min(residual),np.min(core)) psf[np.isnan(psf)] = 0 if slice_scale != None: psf = psf[int ( 0.5 * r_table.shape[1] - slice_scale): int(0.5*r_table.shape[1] + slice_scale), int ( 0.5 * r_table.shape[0] - slice_scale): int(0.5*r_table.shape[0] + slice_scale)] except Exception as e: logger.exception(e) psf = np.nan return psf if return_psf_model: shape = int(2*syntax['scale']),int(2*syntax['scale']) x_slice = np.arange(0,shape[0]) xx_sl,yy_sl= np.meshgrid(x_slice,x_slice) if syntax['use_moffat']: PSF_model = moffat_2d((xx_sl,yy_sl),shape[1]/2,shape[1]/2,0,1,dict(alpha=syntax['image_params']['alpha'],beta=syntax['image_params']['beta'])).reshape(shape) else: PSF_model= gauss_2d((xx_sl,yy_sl),shape[1]/2,shape[1]/2,0,1,dict(sigma=syntax['image_params']['sigma'])).reshape(shape) return PSF_model psf_params = [] x = np.arange(0,2*syntax['scale']) xx,yy= np.meshgrid(x,x) if hold_pos: dx = 1e-6 dy = 1e-6 else: dx = syntax['dx'] dy = syntax['dy'] lower_x_bound = syntax['scale'] lower_y_bound = syntax['scale'] upper_x_bound = syntax['scale'] upper_y_bound = syntax['scale'] if return_subtraction_image: from astropy.visualization.mpl_normalize import ImageNormalize from astropy.visualization import ZScaleInterval, SquaredStretch norm = ImageNormalize( stretch = SquaredStretch()) vmin,vmax = (ZScaleInterval(nsamples = 1500)).get_limits(image) ''' Known issue - for poor images, some sources may be too close to boundary, remove this ''' if not return_fwhm and not no_print: logger.info('Image cutout size: (%.f,%.f) (%.f,%.f)' % ((lower_x_bound,upper_x_bound,lower_y_bound,upper_y_bound))) sources = sources[sources.x_pix < image.shape[1] - upper_x_bound] sources = sources[sources.x_pix > lower_x_bound] sources = sources[sources.y_pix < image.shape[0] - upper_y_bound] sources = sources[sources.y_pix > lower_y_bound] if not no_print: logger.info('Fitting PSF to %d sources' % len(sources)) for n in range(len(sources.index)): if not return_fwhm and not no_print: print('\rFitting PSF to source: %d / %d' % (n+1,len(sources)), end = '') try: idx = list(sources.index)[n] source_base = image[int(sources.y_pix[idx]-lower_y_bound): int(sources.y_pix[idx] + upper_y_bound), int(sources.x_pix[idx]-lower_x_bound): int(sources.x_pix[idx] + upper_x_bound)] if source_base.shape != (int(2*syntax['scale']),int(2*syntax['scale'])): print('not right shape') bkg_median = np.nan H = np.nan H_psf_err = np.nan x_fitted = np.nan y_fitted = np.nan psf_params.append((idx,x_fitted,y_fitted,bkg_median,H,H_psf_err)) continue xc = syntax['scale'] yc = syntax['scale'] xc_global = sources.x_pix[idx] yc_global = sources.y_pix[idx] if not rm_bkg_val: source_bkg_free = source_base bkg_median = 0 else: try: source_bkg_free,bkg_surface = rm_bkg(source_base,syntax,source_base.shape[1]/2,source_base.shape[0]/2) bkg_median = np.nanmedian(bkg_surface) except Exception as e: bkg_median = np.nan H = np.nan H_psf_err = np.nan x_fitted = np.nan y_fitted = np.nan psf_params.append((idx,x_fitted,y_fitted,bkg_median,H,H_psf_err)) logger.exception(e) continue source = source_bkg_free[int(0.5*source_bkg_free.shape[1] - fitting_radius):int(0.5*source_bkg_free.shape[1] + fitting_radius) , int(0.5*source_bkg_free.shape[0] - fitting_radius):int(0.5*source_bkg_free.shape[0] + fitting_radius) ] if source.shape != (int(2*fitting_radius),int(2*fitting_radius)): bkg_median = np.nan H = np.nan H_psf_err = np.nan x_fitted = np.nan y_fitted = np.nan psf_params.append((idx,x_fitted,y_fitted,bkg_median,H,H_psf_err)) continue if np.sum(np.isnan(source)) == len(source): bkg_median = np.nan H = np.nan H_psf_err = np.nan x_fitted = np.nan y_fitted = np.nan psf_params.append((idx,x_fitted,y_fitted,bkg_median,H,H_psf_err)) continue if hold_pos: dx = 1e-6 dy = 1e-6 else: dx = syntax['dx'] dy = syntax['dy'] # if not return_fwhm: # dx = syntax['dx'] # dy = syntax['catalogdy'] x_slice = np.arange(0,2*fitting_radius) xx_sl,yy_sl= np.meshgrid(x_slice,x_slice) if return_fwhm : if not no_print: logger.info('Fitting gaussian to source to get FWHM') pars = lmfit.Parameters() pars.add('A',value = np.nanmax(source),min = 0) pars.add('x0',value = source.shape[1]/2,min = 0.5*source.shape[1] - dx,max = 0.5*source.shape[1] + dx) pars.add('y0',value = source.shape[0]/2,min = 0.5*source.shape[0] - dy,max = 0.5*source.shape[0] + dy) # print(pars) if syntax['use_moffat']: pars.add('alpha',value = syntax['image_params']['alpha'], min = 0,max = 25) pars.add('beta',value = syntax['image_params']['beta'], min = 0, vary = syntax['vary_moff_beta'] ) else: pars.add('sigma',value = syntax['image_params']['sigma'], min = 0, max = gauss_fwhm2sigma(syntax['max_fit_fwhm']) ) if syntax['use_moffat']: fitting_model_fwhm = moffat_fwhm def residual(p): p = p.valuesdict() return (source - moffat_2d((xx_sl,yy_sl),p['x0'],p['y0'],0,p['A'],dict(alpha=p['alpha'],beta=p['beta'])).reshape(source.shape)).flatten() else: fitting_model_fwhm = gauss_sigma2fwhm def residual(p): p = p.valuesdict() return (source - gauss_2d((xx_sl,yy_sl),p['x0'],p['y0'],0,p['A'],dict(sigma=p['sigma'])).reshape(source.shape)).flatten() mini = lmfit.Minimizer(residual, pars,nan_policy = 'omit') result = mini.minimize(method = 'least_squares') xc = result.params['x0'].value yc = result.params['y0'].value if syntax['use_moffat']: target_PSF_FWHM = fitting_model_fwhm(dict(alpha=result.params['alpha'],beta=result.params['beta'])) else: target_PSF_FWHM = fitting_model_fwhm(dict(sigma=result.params['sigma'])) if not no_print: logger.info('Target FWHM: %.3f' % target_PSF_FWHM) xc_global = xc - 0.5*source.shape[1] + sources.x_pix[idx] yc_global = yc - 0.5*source.shape[0] + sources.y_pix[idx] # shift image and increase shize of image by shift # xc_global = sources.x_pix[idx] # yc_global = sources.y_pix[idx] source_base = image[int(yc_global-lower_y_bound): int(yc_global + upper_y_bound), int(xc_global-lower_x_bound): int(xc_global + upper_x_bound)] source_bkg_free,bkg_surface = rm_bkg(source_base,syntax,source_bkg_free.shape[0]/2,source_bkg_free.shape[1]/2) bkg_median = np.nanmedian(bkg_surface) source = source_bkg_free[int(source_bkg_free.shape[0]/2 - fitting_radius):int(source_bkg_free.shape[0]/2 + fitting_radius) , int(source_bkg_free.shape[1]/2 - fitting_radius):int(source_bkg_free.shape[1]/2 + fitting_radius) ] # ============================================================================= # # ============================================================================= try: ''' Fit and subtract PSF model ''' if hold_pos: dx = 1e-6 dy = 1e-6 else: dx = syntax['dx'] dy = syntax['dy'] pars = lmfit.Parameters() pars.add('A', value = np.nanmax(source)*0.75,min = 0) pars.add('x0',value = 0.5*residual_table.shape[1], min = 0.5*residual_table.shape[1]-dx, max = 0.5*residual_table.shape[1]+dx) pars.add('y0',value = 0.5*residual_table.shape[0], min = 0.5*residual_table.shape[0]-dy, max = 0.5*residual_table.shape[0]+dy) def residual(p): p = p.valuesdict() res = ((source - build_psf(p['x0'],p['y0'],0,p['A'],residual_table,slice_scale = source.shape[0]/2))) return res.flatten() mini = lmfit.Minimizer(residual, pars, nan_policy = 'omit', scale_covar=True) result = mini.minimize(method = 'least_squares') xc = result.params['x0'].value yc = result.params['y0'].value H = result.params['A'].value H_psf_err = result.params['A'].stderr x_fitted = xc -0.5*residual_table.shape[1] + xc_global y_fitted = yc -0.5*residual_table.shape[1] + yc_global # print(H,bkg_median) if syntax['remove_sat']: if H+bkg_median >= syntax['sat_lvl']: # print('here') bkg_median = np.nan H = np.nan H_psf_err = np.nan psf_params.append((idx,x_fitted,y_fitted,bkg_median,H,H_psf_err)) continue except Exception as e: logger.exception(e) bkg_median = np.nan H = np.nan H_psf_err = np.nan psf_params.append((idx,x_fitted,y_fitted,bkg_median,H,H_psf_err)) continue if syntax['use_covarience']: H_psf_err = result.params['A'].stderr else: logger.warning('Error not computed') H_psf_err = 0 psf_params.append((idx,x_fitted,y_fitted,bkg_median,H,H_psf_err)) if return_subtraction_image: try: image_section = image[int(yc_global - syntax['scale']): int(yc_global + syntax['scale']), int(xc_global - syntax['scale']): int(xc_global + syntax['scale'])] image[int(yc_global - syntax['scale']): int(yc_global + syntax['scale']), int(xc_global - syntax['scale']): int(xc_global + syntax['scale'])] = image_section - build_psf(xc , yc, 0, H, residual_table) image_section_subtraction = image_section - build_psf(xc , yc, 0, H, residual_table) fig, ax1, = plt.subplots() ax_before = ax1.inset_axes([0.95, 0.70, 0.4, 0.25]) ax_after = ax1.inset_axes([0.95, 0.20, 0.4, 0.25]) ax1.imshow(image, vmin = vmin, vmax = vmax, norm = norm, origin = 'lower', cmap = 'gist_heat', interpolation = 'nearest') ax1.set_xlim(0,image.shape[0]) ax1.set_ylim(0,image.shape[1]) ax1.scatter(xc_global, yc_global, marker = 'o', facecolor = 'None', color = 'green', s = 25) ax_before.imshow(image_section, vmin = vmin, vmax = vmax, norm = norm, origin = 'lower', cmap = 'gist_heat', interpolation = 'nearest') ax_after.imshow(image_section_subtraction, vmin = vmin, vmax = vmax, norm = norm, origin = 'upper', cmap = 'gist_heat', interpolation = 'nearest') ax_after.axis('off') ax_before.axis('off') ax1.axis('off') ax_after.set_title('After') ax_before.set_title('Before') logger.info('Image %s / %s saved' % (str(idx),str(len(sources.index)))) plt.close(fig) except Exception as e: logger.exception(e) plt.close('all') pass if syntax['show_residuals'] or show_plot == True or save_plot == True: fig = plt.figure(figsize = set_size(500,aspect =0.5)) try: from astropy.visualization import ZScaleInterval vmin,vmax = (ZScaleInterval(nsamples = 1500)).get_limits(source_base) h, w = source_bkg_free.shape x = np.linspace(0, int(2*syntax['scale']), int(2*syntax['scale'])) y = np.linspace(0, int(2*syntax['scale']), int(2*syntax['scale'])) X, Y = np.meshgrid(x, y) ncols = 6 nrows = 3 heights = [1,1,0.75] widths = [1,1,0.75,1,1,0.75] grid = GridSpec(nrows, ncols ,wspace=0.5, hspace=0.5, height_ratios=heights,width_ratios = widths ) # grid = GridSpec(nrows, ncols ,wspace=0.3, hspace=0.5) ax1 = fig.add_subplot(grid[0:2, 0:2]) ax1_B = fig.add_subplot(grid[2, 0:2]) ax1_R = fig.add_subplot(grid[0:2, 2]) ax2 = fig.add_subplot(grid[0:2, 3:5]) ax2_B = fig.add_subplot(grid[2, 3:5]) ax2_R = fig.add_subplot(grid[0:2, 5]) ax1_B.set_xlabel('X Pixel') ax2_B.set_xlabel('X Pixel') ax1.set_ylabel('Y Pixel') # ax1.set_title('H:%d' % (H+bkg_median)) # ax2.set_ylabel('Y Pixel') ax1_R.yaxis.tick_right() ax2_R.yaxis.tick_right() ax1.xaxis.tick_top() ax2.xaxis.tick_top() ax2.axes.yaxis.set_ticklabels([]) # ax2_R.axes.yaxis.set_ticklabels([]) bbox=ax1_R.get_position() offset= -0.04 ax1_R.set_position([bbox.x0+ offset, bbox.y0 , bbox.x1-bbox.x0, bbox.y1 - bbox.y0]) bbox=ax2_R.get_position() offset= -0.04 ax2_R.set_position([bbox.x0+ offset, bbox.y0 , bbox.x1-bbox.x0, bbox.y1 - bbox.y0]) bbox=ax1_B.get_position() offset= 0.08 ax1_B.set_position([bbox.x0, bbox.y0+ offset , bbox.x1-bbox.x0, bbox.y1 - bbox.y0]) bbox=ax2_B.get_position() offset= 0.08 ax2_B.set_position([bbox.x0, bbox.y0+ offset , bbox.x1-bbox.x0, bbox.y1 - bbox.y0]) ax1.imshow(source_base, origin = 'lower', aspect="auto", vmin = vmin, vmax = vmax, interpolation = 'nearest' ) ax1.scatter(xc,yc,label = 'Best fit', marker = '+', color = 'red', s = 20) ax1_R.plot(source_base[:,w//2],Y[:,w//2],marker = 'o',color = 'blue') ax1_B.plot(X[h//2,:],source_base[h//2,:],marker = 'o',color = 'blue') # include surface ax1_R.plot(bkg_surface[:,w//2],Y[:,w//2],marker = 's',color = 'red') ax1_B.plot(X[h//2,:],bkg_surface[h//2,:],marker = 's',color = 'red') fitted_source = build_psf(xc,yc,0,H,residual_table) # include fitted_source ax1_R.plot((bkg_surface+fitted_source)[:,w//2],Y[:,w//2],marker = 's',color = 'green') ax1_B.plot(X[h//2,:],(bkg_surface+fitted_source)[h//2,:],marker = 's',color = 'green') ''' Subtracted image ''' import matplotlib.ticker as ticker ax1_B_yticks = np.array(ax1_B.get_yticks()) scale = order_shift(abs(ax1_B_yticks)) ticks = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale)) ax1_B.set_ylabel('$10^{%d}$ counts' % np.log10(order_shift(abs(ax1_B_yticks)))) ax1_B.yaxis.set_major_formatter(ticks) ax1_R_yticks = np.array(ax1_R.get_xticks()) scale = order_shift(abs(ax1_R_yticks)) ticks = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale)) ax1_R.set_xlabel('$10^{%d}$ counts' % np.log10(order_shift(abs(ax1_R_yticks)))) ax1_R.xaxis.set_major_formatter(ticks) ax2_B_yticks = np.array(ax2_B.get_yticks()) scale = order_shift(abs(ax2_B_yticks)) ticks = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale)) ax2_B.set_ylabel('$10^{%d}$ counts' % np.log10(order_shift(abs(ax2_B_yticks)))) ax2_B.yaxis.set_major_formatter(ticks) ax2_R_yticks = np.array(ax2_R.get_xticks()) scale = order_shift(abs(ax2_R_yticks)) ticks = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale)) ax2_R.set_xlabel('$10^{%d}$ counts' % np.log10(order_shift(abs(ax2_R_yticks)))) ax2_R.xaxis.set_major_formatter(ticks) subtracted_image = source_bkg_free - fitted_source + bkg_surface ax2.imshow(subtracted_image, origin = 'lower', aspect="auto", vmin = vmin, vmax = vmax, interpolation = 'nearest' ) ax2.scatter(xc,yc,label = 'Best fit', marker = '+', color = 'red', s = 20) ax2_R.plot(subtracted_image[:,w//2],Y[:,w//2],marker = 'o',color = 'blue') ax2_B.plot(X[h//2,:],subtracted_image[h//2,:],marker = 'o',color = 'blue') # Show surface ax2_R.plot(bkg_surface[:,w//2],Y[:,w//2],marker = 's',color = 'red') ax2_B.plot(X[h//2,:],bkg_surface[h//2,:],marker = 's',color = 'red') # include fitted_source ax2_R.plot((bkg_surface+fitted_source)[:,w//2],Y[:,w//2],marker = 's',color = 'green') ax2_B.plot(X[h//2,:],(bkg_surface+fitted_source)[h//2,:],marker = 's',color = 'green') if save_plot == True: fig.savefig(syntax['write_dir']+'target_psf_'+fname+'.pdf', format = 'pdf', # bbox_inches='tight' ) logger.info('Image %s / %s saved' % (str(n+1),str(len(sources.index)) )) else: pathlib.Path(syntax['write_dir']+'/'+'psf_subtractions/').mkdir(parents = True, exist_ok=True) plt.savefig(syntax['write_dir']+'psf_subtractions/'+'psf_subtraction_{}.png'.format(int(n))) plt.close(fig) except Exception as e: logger.exception(e) plt.close('all') except Exception as e: logger.exception(e) bkg_median = np.nan H = np.nan H_psf_err = np.nan psf_params.append((idx,x_fitted,y_fitted,bkg_median,H,H_psf_err)) continue new_df = pd.DataFrame(psf_params,columns = ('idx','x_fitted','y_fitted','bkg','H_psf','H_psf_err'),index = sources.index) if return_fwhm: new_df['target_fwhm'] = target_PSF_FWHM, # new_df['target_fwhm_err'] =source_fwhm_err elif not no_print: print(' ') if not return_psf_model: return pd.concat([sources,new_df],axis = 1),build_psf
def build_r_table(base_image,selected_sources,syntax,fwhm): ''' Build tables of residuals from bright isolated sources given in selected_sources dataframe Function will function selected function to these sources and normialise there residaul array to build a residual image which will then be used to make a PSF for the image ''' import numpy as np from astropy.stats import sigma_clipped_stats from photutils import DAOStarFinder import pandas as pd import lmfit import logging from autophot.packages.functions import pix_dist,gauss_sigma2fwhm from autophot.packages.uncertain import SNR from autophot.packages.aperture import ap_phot from autophot.packages.functions import gauss_2d,gauss_fwhm2sigma from autophot.packages.functions import moffat_2d,moffat_fwhm if syntax['use_moffat']: fitting_model = moffat_2d fitting_model_fwhm = moffat_fwhm else: fitting_model = gauss_2d fitting_model_fwhm = gauss_sigma2fwhm try: logger = logging.getLogger(__name__) image = base_image.copy() # Only fit to a small image with radius ~the fwhm fitting_radius = int(np.ceil(fwhm)) # for matchinf each source residual image with will regrid the image for shifting later regriding_size = int(syntax['regrid_size']) # m = regriding_size if regriding_size % 2 > 0: logger.info('regrid size must be even adding 1') regriding_size += 1 # FWHM/sigma fits fwhm_fit = [] # what sources will be used construction_sources = [] # Residual Table in extended format residual_table = np.zeros((int(2 * syntax['scale'] * regriding_size), int(2 * syntax['scale']*regriding_size))) # if syntax['remove_sat']: # len_with_sat = len(selected_sources) # selected_sources = selected_sources[selected_sources['flux_ap']+selected_sources['median']<= syntax['sat_lvl']] # print('%d saturdated PSF stars removed' % (len_with_sat-len(selected_sources))) selected_sources['dist'] = pix_dist(syntax['target_x_pix'],selected_sources.x_pix, syntax['target_y_pix'],selected_sources.y_pix) selected_sources_mask = sigma_clip(selected_sources['median'], sigma=3, maxiters=5,masked=True) selected_sources = selected_sources[~selected_sources_mask.mask] if syntax['use_local_stars_for_PSF']: ''' Use local stars given by 'use_acrmin' parameter ''' selected_sources_test = selected_sources[selected_sources['dist'] <= syntax['local_radius']] selected_sources = selected_sources_test flux_idx = [i for i in selected_sources.flux_ap.sort_values(ascending = False).index] sources_used = 1 n = 0 failsafe = 0 psf_mag = [] image_radius_lst = [] sources_dict = {} while sources_used <= syntax['psf_source_no']: if failsafe>25: logger.info('PSF - Failed to build psf') residual_table=None fwhm_fit = fwhm if n >= len(flux_idx): if sources_used >= syntax['min_psf_source_no']: logger.info('Using worst case scenario number of sources') break logger.info('PSF - Ran out of sources') residual_table=None fwhm_fit = fwhm break try: idx = flux_idx[n] n+=1 # Inital guess at where psf source is is psf_image = image[int(selected_sources.y_pix[idx]-syntax['scale']): int(selected_sources.y_pix[idx] + syntax['scale']), int(selected_sources.x_pix[idx]-syntax['scale']): int(selected_sources.x_pix[idx] + syntax['scale'])] if len(psf_image) == 0: logger.info('PSF image ERROR') continue try: if np.min(psf_image) == np.nan: continue except: continue mean, median, std = sigma_clipped_stats(psf_image, sigma = syntax['source_sigma_close_up'], maxiters = syntax['iters']) daofind = DAOStarFinder(fwhm=np.floor(fwhm), threshold = syntax['lim_SNR']*std, roundlo = -1.0, roundhi = 1.0, sharplo = 0.2, sharphi = 1.0) sources = daofind(psf_image - median) if sources is None: sources = [] if len(sources) > 1: dist = [list(pix_dist( sources['xcentroid'][i], sources['xcentroid'], sources['ycentroid'][i], sources['ycentroid']) for i in range(len(sources)))] dist = np.array(list(set(np.array(dist).flatten()))) if all(dist < 2): pass else: continue psf_image = image[int(selected_sources.y_pix[idx]-syntax['scale']): int(selected_sources.y_pix[idx]+syntax['scale']), int(selected_sources.x_pix[idx]-syntax['scale']): int(selected_sources.x_pix[idx]+syntax['scale'])] psf_image_bkg_free,bkg_surface = rm_bkg(psf_image,syntax,psf_image.shape[0]/2,psf_image.shape[0]/2) x = np.arange(0,2*syntax['scale']) xx,yy= np.meshgrid(x,x) pars = lmfit.Parameters() pars.add('A',value = np.nanmax(psf_image_bkg_free),min=0) pars.add('x0',value = psf_image_bkg_free.shape[1]/2,min = 0, max =psf_image_bkg_free.shape[1] ) pars.add('y0',value = psf_image_bkg_free.shape[0]/2,min = 0, max =psf_image_bkg_free.shape[0]) pars.add('sky',value = np.nanmedian(psf_image_bkg_free)) if syntax['use_moffat']: pars.add('alpha',value = syntax['image_params']['alpha'], min = 0, vary = syntax['fit_PSF_FWHM'] ) pars.add('beta',value = syntax['image_params']['beta'], min = 0, vary = syntax['vary_moff_beta'] or syntax['fit_PSF_FWHM'] ) else: pars.add('sigma', value = syntax['image_params']['sigma'], min = 0, max = gauss_fwhm2sigma(syntax['max_fit_fwhm']), vary = syntax['vary_moff_beta'] or syntax['fit_PSF_FWHM'] ) if syntax['use_moffat']: def residual(p): p = p.valuesdict() return (psf_image_bkg_free - moffat_2d((xx,yy),p['x0'],p['y0'],p['sky'],p['A'],dict(alpha=p['alpha'],beta=p['beta'])).reshape(psf_image_bkg_free.shape)).flatten() else: def residual(p): p = p.valuesdict() return (psf_image_bkg_free - gauss_2d((xx,yy),p['x0'],p['y0'],p['sky'],p['A'],dict(sigma=p['sigma'])).reshape(psf_image_bkg_free.shape)).flatten() mini = lmfit.Minimizer(residual, pars,nan_policy = 'omit') result = mini.minimize(method = 'least_squares') xc = result.params['x0'].value yc = result.params['y0'].value ap_range = np.arange(0.1,syntax['scale']/fwhm,1/25) ap_sum = [] for nm in ap_range: ap,bkg = ap_phot( [(xc,yc)] , psf_image_bkg_free, radius = nm * fwhm, r_in = syntax['r_in_size'] * fwhm, r_out = syntax['r_out_size'] * fwhm) ap_sum.append(ap) ap_sum = ap_sum/np.nanmax(ap_sum) radius = ap_range[np.argmax(ap_sum>=syntax['norm_count_sum'])] image_radius = radius * fwhm image_radius_lst.append(image_radius) ''' refit only focusing on highest SNR area given by fitting radius ''' # global pixel coorindates base on bn gaussian fit xc_global = xc - syntax['scale'] + int(selected_sources.x_pix[idx]) yc_global = yc - syntax['scale'] + int(selected_sources.y_pix[idx]) # recenter image absed on location of best fit x and y psf_image = image[int(yc_global-syntax['scale']): int(yc_global + syntax['scale']), int(xc_global-syntax['scale']): int(xc_global + syntax['scale'])] psf_image_bkg_free,bkg_median = rm_bkg(psf_image,syntax,psf_image.shape[0]/2,psf_image.shape[0]/2) psf_image_slice = psf_image_bkg_free[int(psf_image_bkg_free.shape[0]/2 - fitting_radius):int(psf_image_bkg_free.shape[0]/2 + fitting_radius) , int(psf_image_bkg_free.shape[0]/2 - fitting_radius):int(psf_image_bkg_free.shape[0]/2 + fitting_radius) ] x_slice = np.arange(0,2*fitting_radius) xx_sl,yy_sl= np.meshgrid(x_slice,x_slice) pars = lmfit.Parameters() pars.add('A',value = np.nanmean(psf_image_slice),min = 0,max = np.nanmax(psf_image_slice) ) pars.add('x0',value = psf_image_slice.shape[1]/2,min = 0,max = psf_image_slice.shape[1]) pars.add('y0',value = psf_image_slice.shape[0]/2,min = 0,max = psf_image_slice.shape[0] ) if syntax['use_moffat']: pars.add('alpha',value = syntax['image_params']['alpha'], min = 0, vary = syntax['fit_PSF_FWHM'] ) pars.add('beta',value = syntax['image_params']['beta'], min = 0, vary = syntax['vary_moff_beta'] or syntax['fit_PSF_FWHM'] ) else: pars.add('sigma', value = syntax['image_params']['sigma'], min = 0, max = gauss_fwhm2sigma(syntax['max_fit_fwhm']), vary = syntax['fit_PSF_FWHM'] ) if syntax['use_moffat']: def residual(p): p = p.valuesdict() return (psf_image_slice - moffat_2d((xx_sl,yy_sl),p['x0'],p['y0'],0,p['A'],dict(alpha=p['alpha'],beta=p['beta'])).reshape(psf_image_slice .shape)).flatten() else: def residual(p): p = p.valuesdict() return (psf_image_slice - gauss_2d((xx_sl,yy_sl),p['x0'],p['y0'],0,p['A'],dict(sigma=p['sigma'])).reshape(psf_image_slice.shape)).flatten() mini = lmfit.Minimizer(residual, pars,nan_policy = 'omit') result = mini.minimize(method = 'least_squares') # print(result.params) positions = list(zip([xc_global ],[yc_global ])) psf_counts,psf_bkg = ap_phot(positions, image, radius = syntax['ap_size'] * fwhm, r_in = syntax['r_in_size'] * fwhm, r_out = syntax['r_out_size'] * fwhm) if syntax['use_moffat']: PSF_FWHM = fitting_model_fwhm(dict(alpha=result.params['alpha'],beta=result.params['beta'])) else: PSF_FWHM = fitting_model_fwhm(dict(sigma=result.params['sigma'])) PSF_SNR = SNR(psf_counts,psf_bkg,syntax['exp_time'],0,syntax['ap_size']*fwhm,syntax['gain'],0)[0] if np.isnan(PSF_SNR) or np.isnan(PSF_FWHM): logger.debug('PSF Contruction source fitting error') continue if PSF_SNR < syntax['construction_SNR'] and syntax['exp_time'] > 1: logger.debug('PSF constuction source too low: %s' % int(PSF_SNR)) continue else: logger.info('SNR: %d FWHM: %.3f' % (PSF_SNR,PSF_FWHM)) # print('\rPSF source %d / %d :: SNR: %d' % (int(PSF_SNR)),end = '') pass # print(result.params) xc = result.params['x0'].value yc = result.params['y0'].value H = result.params['A'].value H_err = result.params['A'].stderr xc_correction = xc - fitting_radius + syntax['scale'] yc_correction = yc - fitting_radius + syntax['scale'] if syntax['use_moffat']: residual = psf_image_bkg_free - moffat_2d((xx,yy),xc_correction,yc_correction, 0,H, dict(alpha=result.params['alpha'],beta=result.params['beta'])).reshape(psf_image_bkg_free.shape) PSF_FWHM = fitting_model_fwhm(dict(alpha=result.params['alpha'],beta=result.params['beta'])) else: residual = psf_image_bkg_free - gauss_2d((xx,yy),xc_correction,yc_correction, 0,H, dict(sigma=result.params['sigma'])).reshape(psf_image_bkg_free.shape) PSF_FWHM = fitting_model_fwhm(dict(sigma=result.params['sigma'])) residual /= H psf_mag.append(-2.5*np.log10(H)) residual_regrid = np.repeat(np.repeat(residual, regriding_size, axis=0), regriding_size, axis=1) x_roll = scale_roll(fitting_radius,xc,regriding_size) y_roll = scale_roll(fitting_radius,yc,regriding_size) residual_roll = np.roll(np.roll(residual_regrid,y_roll,axis=0),x_roll,axis = 1) residual_table += residual_roll sources_dict['PSF_%d'%sources_used] = {} # print(H_err) sources_dict['PSF_%d'%sources_used]['x_pix'] = xc_global sources_dict['PSF_%d'%sources_used]['y_pix'] = yc_global sources_dict['PSF_%d'%sources_used]['H_psf'] = float(H/syntax['exp_time']) # sources_dict['PSF_%d'%sources_used]['H_psf_err'] = float(H_err/syntax['exp_time']) sources_dict['PSF_%d'%sources_used]['fwhm'] = PSF_FWHM sources_dict['PSF_%d'%sources_used]['x_best'] = xc_correction sources_dict['PSF_%d'%sources_used]['y_best'] = yc_correction sources_dict['PSF_%d'%sources_used]['close_up'] = psf_image_bkg_free sources_dict['PSF_%d'%sources_used]['residual'] = residual sources_dict['PSF_%d'%sources_used]['regrid'] = residual_regrid sources_dict['PSF_%d'%sources_used]['roll'] = residual_roll sources_dict['PSF_%d'%sources_used]['x_roll'] =x_roll sources_dict['PSF_%d'%sources_used]['y_roll'] =y_roll logger.debug('Residual table updated: %d / %d ' % (sources_used,syntax['psf_source_no'])) print('\rResidual table updated: %d / %d ' % (sources_used,syntax['psf_source_no']) ,end = '') sources_used +=1 fwhm_fit.append(PSF_FWHM) except Exception as e: # logger.exception(e) logger.error('** Fitting error - trying another source**') failsafe+=1 n+=1 continue print(' ') if sources_used < syntax['min_psf_source_no']: logger.warning('BUILDING PSF: Not enough useable sources found') return None,None,construction_sources.append([np.nan]*5),syntax logger.debug('PSF Successful') # # Get average of residual table residual_table/= sources_used # regrid residual table to psf size residual_table = rebin(residual_table,( int(2*syntax['scale']),int(2*syntax['scale']))) # construction_sources = pd.DataFrame(construction_sources) construction_sources = pd.DataFrame.from_dict(sources_dict, orient='index', columns=['x_pix','y_pix','H_psf','H_psf_err','fwhm','x_best','y_best']) construction_sources.reset_index(inplace = True) if syntax['plots_PSF_residual']: from autophot.packages.create_plots import plot_PSF_model_steps plot_PSF_model_steps(sources_dict,syntax,image) if syntax['plots_PSF_sources']: from autophot.packages.create_plots import plot_PSF_construction_grid plot_PSF_construction_grid(construction_sources,image,syntax) image_radius_lst = np.array(image_radius_lst) syntax['image_radius'] = image_radius_lst.mean() logger.info('Image_radius [pix] : %.3f +/- %.3f' % (image_radius_lst.mean(), image_radius_lst.std())) except Exception as e: logger.exception('BUILDING PSF: ',e) raise Exception return residual_table,fwhm_fit,construction_sources,syntax
def residual(p): p = p.valuesdict() return (psf_image_bkg_free - moffat_2d((xx,yy),p['x0'],p['y0'],p['sky'],p['A'],dict(alpha=p['alpha'],beta=p['beta'])).reshape(psf_image_bkg_free.shape)).flatten()