def fit(self, X, Y, sample_weight=None): import sklearn.ensemble import sklearn.tree self.n_estimators = int(self.n_estimators) self.learning_rate = float(self.learning_rate) self.max_depth = int(self.max_depth) base_estimator = sklearn.tree.DecisionTreeClassifier(max_depth=self.max_depth) estimator = sklearn.ensemble.AdaBoostClassifier( base_estimator=base_estimator, n_estimators=self.n_estimators, learning_rate=self.learning_rate, algorithm=self.algorithm, random_state=self.random_state ) if len(Y.shape) == 2 and Y.shape[1] > 1: estimator = MultilabelClassifier(estimator, n_jobs=1) estimator.fit(X, Y, sample_weight=sample_weight) else: estimator.fit(X, Y, sample_weight=sample_weight) self.estimator = estimator return self
def iterative_fit(self, X, y, n_iter=1, refit=False, sample_weight=None): from sklearn.linear_model.stochastic_gradient import SGDClassifier if refit: self.estimator = None if self.estimator is None: self._iterations = 0 self.alpha = float(self.alpha) self.fit_intercept = self.fit_intercept == 'True' self.n_iter = int(self.n_iter) self.l1_ratio = float( self.l1_ratio) if self.l1_ratio is not None else 0.15 self.epsilon = float( self.epsilon) if self.epsilon is not None else 0.1 self.eta0 = float(self.eta0) self.power_t = float( self.power_t) if self.power_t is not None else 0.25 self.average = self.average == 'True' self.estimator = SGDClassifier( loss=self.loss, penalty=self.penalty, alpha=self.alpha, fit_intercept=self.fit_intercept, n_iter=1, learning_rate=self.learning_rate, l1_ratio=self.l1_ratio, epsilon=self.epsilon, eta0=self.eta0, power_t=self.power_t, shuffle=True, average=self.average, random_state=self.random_state, ) # Fallback for multilabel classification if len(y.shape) > 1 and y.shape[1] > 1: self.estimator.n_iter = self.n_iter self.estimator = MultilabelClassifier(self.estimator, n_jobs=1) self.estimator.fit(X, y, sample_weight=sample_weight) self.fully_fit_ = True else: self.estimator.n_iter = n_iter self.estimator.partial_fit(X, y, classes=np.unique(y), sample_weight=sample_weight) if self._iterations >= self.n_iter: self.fully_fit_ = True self._iterations += n_iter return self
def iterative_fit(self, X, y, n_iter=1, refit=False, sample_weight=None): from sklearn.linear_model.stochastic_gradient import SGDClassifier if refit: self.estimator = None if self.estimator is None: self._iterations = 0 self.alpha = float(self.alpha) self.fit_intercept = self.fit_intercept == 'True' self.n_iter = int(self.n_iter) self.l1_ratio = float(self.l1_ratio) if self.l1_ratio is not None else 0.15 self.epsilon = float(self.epsilon) if self.epsilon is not None else 0.1 self.eta0 = float(self.eta0) self.power_t = float(self.power_t) if self.power_t is not None else 0.25 self.average = self.average == 'True' self.estimator = SGDClassifier(loss=self.loss, penalty=self.penalty, alpha=self.alpha, fit_intercept=self.fit_intercept, n_iter=1, learning_rate=self.learning_rate, l1_ratio=self.l1_ratio, epsilon=self.epsilon, eta0=self.eta0, power_t=self.power_t, shuffle=True, average=self.average, random_state=self.random_state,) # Fallback for multilabel classification if len(y.shape) > 1 and y.shape[1] > 1: self.estimator.n_iter = self.n_iter self.estimator = MultilabelClassifier(self.estimator, n_jobs=1) self.estimator.fit(X, y, sample_weight=sample_weight) self.fully_fit_ = True else: self.estimator.n_iter = n_iter self.estimator.partial_fit(X, y, classes=np.unique(y), sample_weight=sample_weight) if self._iterations >= self.n_iter: self.fully_fit_ = True self._iterations += n_iter return self
def iterative_fit(self, X, y, sample_weight=None, n_iter=1, refit=False): import sklearn.ensemble # Special fix for gradient boosting! if isinstance(X, np.ndarray): X = np.ascontiguousarray(X, dtype=X.dtype) if refit: self.estimator = None if self.estimator is None: self.learning_rate = float(self.learning_rate) self.n_estimators = int(self.n_estimators) self.subsample = float(self.subsample) self.min_samples_split = int(self.min_samples_split) self.min_samples_leaf = int(self.min_samples_leaf) self.min_weight_fraction_leaf = float(self.min_weight_fraction_leaf) if self.max_depth == "None": self.max_depth = None else: self.max_depth = int(self.max_depth) num_features = X.shape[1] max_features = int( float(self.max_features) * (np.log(num_features) + 1)) # Use at most half of the features max_features = max(1, min(int(X.shape[1] / 2), max_features)) if self.max_leaf_nodes == "None": self.max_leaf_nodes = None else: self.max_leaf_nodes = int(self.max_leaf_nodes) self.verbose = int(self.verbose) self.estimator = sklearn.ensemble.GradientBoostingClassifier( loss=self.loss, learning_rate=self.learning_rate, n_estimators=0, subsample=self.subsample, min_samples_split=self.min_samples_split, min_samples_leaf=self.min_samples_leaf, min_weight_fraction_leaf=self.min_weight_fraction_leaf, max_depth=self.max_depth, max_features=max_features, max_leaf_nodes=self.max_leaf_nodes, init=self.init, random_state=self.random_state, verbose=self.verbose, warm_start=True, ) # Fallback for multilabel classification if len(y.shape) > 1 and y.shape[1] > 1: import sklearn.multiclass self.estimator.n_estimators = self.n_estimators self.estimator = MultilabelClassifier(self.estimator, n_jobs=1) self.estimator.fit(X, y) self.fully_fit_ = True else: tmp = self.estimator # TODO copy ? tmp.n_estimators += n_iter tmp.fit(X, y, sample_weight=sample_weight) self.estimator = tmp # Apparently this if is necessary if self.estimator.n_estimators >= self.n_estimators: self.fully_fit_ = True return self
class GradientBoostingClassifier(AutoSklearnClassificationAlgorithm): def __init__(self, loss, learning_rate, n_estimators, subsample, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_depth, max_features, max_leaf_nodes, init=None, random_state=None, verbose=0): self.loss = loss self.learning_rate = learning_rate self.n_estimators = n_estimators self.subsample = subsample self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_depth = max_depth self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.init = init self.random_state = random_state self.verbose = verbose self.estimator = None self.fully_fit_ = False def fit(self, X, y, sample_weight=None, refit=False): if self.estimator is None or refit: self.iterative_fit(X, y, n_iter=1, sample_weight=sample_weight, refit=refit) while not self.configuration_fully_fitted(): self.iterative_fit(X, y, n_iter=1, sample_weight=sample_weight) return self def iterative_fit(self, X, y, sample_weight=None, n_iter=1, refit=False): import sklearn.ensemble # Special fix for gradient boosting! if isinstance(X, np.ndarray): X = np.ascontiguousarray(X, dtype=X.dtype) if refit: self.estimator = None if self.estimator is None: self.learning_rate = float(self.learning_rate) self.n_estimators = int(self.n_estimators) self.subsample = float(self.subsample) self.min_samples_split = int(self.min_samples_split) self.min_samples_leaf = int(self.min_samples_leaf) self.min_weight_fraction_leaf = float(self.min_weight_fraction_leaf) if self.max_depth == "None": self.max_depth = None else: self.max_depth = int(self.max_depth) num_features = X.shape[1] max_features = int( float(self.max_features) * (np.log(num_features) + 1)) # Use at most half of the features max_features = max(1, min(int(X.shape[1] / 2), max_features)) if self.max_leaf_nodes == "None": self.max_leaf_nodes = None else: self.max_leaf_nodes = int(self.max_leaf_nodes) self.verbose = int(self.verbose) self.estimator = sklearn.ensemble.GradientBoostingClassifier( loss=self.loss, learning_rate=self.learning_rate, n_estimators=0, subsample=self.subsample, min_samples_split=self.min_samples_split, min_samples_leaf=self.min_samples_leaf, min_weight_fraction_leaf=self.min_weight_fraction_leaf, max_depth=self.max_depth, max_features=max_features, max_leaf_nodes=self.max_leaf_nodes, init=self.init, random_state=self.random_state, verbose=self.verbose, warm_start=True, ) # Fallback for multilabel classification if len(y.shape) > 1 and y.shape[1] > 1: import sklearn.multiclass self.estimator.n_estimators = self.n_estimators self.estimator = MultilabelClassifier(self.estimator, n_jobs=1) self.estimator.fit(X, y) self.fully_fit_ = True else: tmp = self.estimator # TODO copy ? tmp.n_estimators += n_iter tmp.fit(X, y, sample_weight=sample_weight) self.estimator = tmp # Apparently this if is necessary if self.estimator.n_estimators >= self.n_estimators: self.fully_fit_ = True return self def configuration_fully_fitted(self): if self.estimator is None: return False elif not hasattr(self, 'fully_fit_'): return False else: return self.fully_fit_ def predict(self, X): if self.estimator is None: raise NotImplementedError return self.estimator.predict(X) def predict_proba(self, X): if self.estimator is None: raise NotImplementedError() return self.estimator.predict_proba(X) @staticmethod def get_properties(dataset_properties=None): return {'shortname': 'GB', 'name': 'Gradient Boosting Classifier', 'handles_regression': False, 'handles_classification': True, 'handles_multiclass': True, 'handles_multilabel': True, 'is_deterministic': True, 'input': (DENSE, UNSIGNED_DATA), 'output': (PREDICTIONS,)} @staticmethod def get_hyperparameter_search_space(dataset_properties=None): cs = ConfigurationSpace() loss = cs.add_hyperparameter(Constant("loss", "deviance")) learning_rate = cs.add_hyperparameter(UniformFloatHyperparameter( name="learning_rate", lower=0.01, upper=1, default=0.1, log=True)) n_estimators = cs.add_hyperparameter(UniformIntegerHyperparameter ("n_estimators", 50, 500, default=100)) max_depth = cs.add_hyperparameter(UniformIntegerHyperparameter( name="max_depth", lower=1, upper=10, default=3)) min_samples_split = cs.add_hyperparameter(UniformIntegerHyperparameter( name="min_samples_split", lower=2, upper=20, default=2, log=False)) min_samples_leaf = cs.add_hyperparameter(UniformIntegerHyperparameter( name="min_samples_leaf", lower=1, upper=20, default=1, log=False)) min_weight_fraction_leaf = cs.add_hyperparameter( UnParametrizedHyperparameter("min_weight_fraction_leaf", 0.)) subsample = cs.add_hyperparameter(UniformFloatHyperparameter( name="subsample", lower=0.01, upper=1.0, default=1.0, log=False)) max_features = cs.add_hyperparameter(UniformFloatHyperparameter( "max_features", 0.5, 5, default=1)) max_leaf_nodes = cs.add_hyperparameter(UnParametrizedHyperparameter( name="max_leaf_nodes", value="None")) return cs
class SGD(AutoSklearnClassificationAlgorithm): def __init__(self, loss, penalty, alpha, fit_intercept, n_iter, learning_rate, l1_ratio=0.15, epsilon=0.1, eta0=0.01, power_t=0.5, average=False, random_state=None): self.loss = loss self.penalty = penalty self.alpha = alpha self.fit_intercept = fit_intercept self.n_iter = n_iter self.learning_rate = learning_rate self.l1_ratio = l1_ratio self.epsilon = epsilon self.eta0 = eta0 self.power_t = power_t self.random_state = random_state self.average = average self.estimator = None def fit(self, X, y, sample_weight=None): while not self.configuration_fully_fitted(): self.iterative_fit(X, y, n_iter=1, sample_weight=sample_weight) return self def iterative_fit(self, X, y, n_iter=1, refit=False, sample_weight=None): from sklearn.linear_model.stochastic_gradient import SGDClassifier if refit: self.estimator = None if self.estimator is None: self._iterations = 0 self.alpha = float(self.alpha) self.fit_intercept = self.fit_intercept == 'True' self.n_iter = int(self.n_iter) self.l1_ratio = float(self.l1_ratio) if self.l1_ratio is not None else 0.15 self.epsilon = float(self.epsilon) if self.epsilon is not None else 0.1 self.eta0 = float(self.eta0) self.power_t = float(self.power_t) if self.power_t is not None else 0.25 self.average = self.average == 'True' self.estimator = SGDClassifier(loss=self.loss, penalty=self.penalty, alpha=self.alpha, fit_intercept=self.fit_intercept, n_iter=1, learning_rate=self.learning_rate, l1_ratio=self.l1_ratio, epsilon=self.epsilon, eta0=self.eta0, power_t=self.power_t, shuffle=True, average=self.average, random_state=self.random_state,) # Fallback for multilabel classification if len(y.shape) > 1 and y.shape[1] > 1: self.estimator.n_iter = self.n_iter self.estimator = MultilabelClassifier(self.estimator, n_jobs=1) self.estimator.fit(X, y, sample_weight=sample_weight) self.fully_fit_ = True else: self.estimator.n_iter = n_iter self.estimator.partial_fit(X, y, classes=np.unique(y), sample_weight=sample_weight) if self._iterations >= self.n_iter: self.fully_fit_ = True self._iterations += n_iter return self def configuration_fully_fitted(self): if self.estimator is None: return False elif not hasattr(self, 'fully_fit_'): return False else: return self.fully_fit_ def predict(self, X): if self.estimator is None: raise NotImplementedError() return self.estimator.predict(X) def predict_proba(self, X): if self.estimator is None: raise NotImplementedError() if self.loss in ["log", "modified_huber"]: return self.estimator.predict_proba(X) else: df = self.estimator.decision_function(X) return softmax(df) @staticmethod def get_properties(dataset_properties=None): return {'shortname': 'SGD Classifier', 'name': 'Stochastic Gradient Descent Classifier', 'handles_regression': False, 'handles_classification': True, 'handles_multiclass': True, 'handles_multilabel': True, 'is_deterministic': True, 'input': (DENSE, SPARSE, UNSIGNED_DATA), 'output': (PREDICTIONS,)} @staticmethod def get_hyperparameter_search_space(dataset_properties=None): cs = ConfigurationSpace() loss = cs.add_hyperparameter(CategoricalHyperparameter("loss", ["hinge", "log", "modified_huber", "squared_hinge", "perceptron"], default="log")) penalty = cs.add_hyperparameter(CategoricalHyperparameter( "penalty", ["l1", "l2", "elasticnet"], default="l2")) alpha = cs.add_hyperparameter(UniformFloatHyperparameter( "alpha", 10e-7, 1e-1, log=True, default=0.0001)) l1_ratio = cs.add_hyperparameter(UniformFloatHyperparameter( "l1_ratio", 1e-9, 1, log=True, default=0.15)) fit_intercept = cs.add_hyperparameter(UnParametrizedHyperparameter( "fit_intercept", "True")) n_iter = cs.add_hyperparameter(UniformIntegerHyperparameter( "n_iter", 5, 1000, log=True, default=20)) epsilon = cs.add_hyperparameter(UniformFloatHyperparameter( "epsilon", 1e-5, 1e-1, default=1e-4, log=True)) learning_rate = cs.add_hyperparameter(CategoricalHyperparameter( "learning_rate", ["optimal", "invscaling", "constant"], default="optimal")) eta0 = cs.add_hyperparameter(UniformFloatHyperparameter( "eta0", 10**-7, 0.1, default=0.01)) power_t = cs.add_hyperparameter(UniformFloatHyperparameter( "power_t", 1e-5, 1, default=0.25)) average = cs.add_hyperparameter(CategoricalHyperparameter( "average", ["False", "True"], default="False")) # TODO add passive/aggressive here, although not properly documented? elasticnet = EqualsCondition(l1_ratio, penalty, "elasticnet") epsilon_condition = EqualsCondition(epsilon, loss, "modified_huber") # eta0 seems to be always active according to the source code; when # learning_rate is set to optimial, eta0 is the starting value: # https://github.com/scikit-learn/scikit-learn/blob/0.15.X/sklearn/linear_model/sgd_fast.pyx #eta0_and_inv = EqualsCondition(eta0, learning_rate, "invscaling") #eta0_and_constant = EqualsCondition(eta0, learning_rate, "constant") #eta0_condition = OrConjunction(eta0_and_inv, eta0_and_constant) power_t_condition = EqualsCondition(power_t, learning_rate, "invscaling") cs.add_condition(elasticnet) cs.add_condition(epsilon_condition) cs.add_condition(power_t_condition) return cs
class SGD(AutoSklearnClassificationAlgorithm): def __init__(self, loss, penalty, alpha, fit_intercept, n_iter, learning_rate, l1_ratio=0.15, epsilon=0.1, eta0=0.01, power_t=0.5, average=False, random_state=None): self.loss = loss self.penalty = penalty self.alpha = alpha self.fit_intercept = fit_intercept self.n_iter = n_iter self.learning_rate = learning_rate self.l1_ratio = l1_ratio self.epsilon = epsilon self.eta0 = eta0 self.power_t = power_t self.random_state = random_state self.average = average self.estimator = None def fit(self, X, y, sample_weight=None): while not self.configuration_fully_fitted(): self.iterative_fit(X, y, n_iter=1, sample_weight=sample_weight) return self def iterative_fit(self, X, y, n_iter=1, refit=False, sample_weight=None): from sklearn.linear_model.stochastic_gradient import SGDClassifier if refit: self.estimator = None if self.estimator is None: self._iterations = 0 self.alpha = float(self.alpha) self.fit_intercept = self.fit_intercept == 'True' self.n_iter = int(self.n_iter) self.l1_ratio = float( self.l1_ratio) if self.l1_ratio is not None else 0.15 self.epsilon = float( self.epsilon) if self.epsilon is not None else 0.1 self.eta0 = float(self.eta0) self.power_t = float( self.power_t) if self.power_t is not None else 0.25 self.average = self.average == 'True' self.estimator = SGDClassifier( loss=self.loss, penalty=self.penalty, alpha=self.alpha, fit_intercept=self.fit_intercept, n_iter=1, learning_rate=self.learning_rate, l1_ratio=self.l1_ratio, epsilon=self.epsilon, eta0=self.eta0, power_t=self.power_t, shuffle=True, average=self.average, random_state=self.random_state, ) # Fallback for multilabel classification if len(y.shape) > 1 and y.shape[1] > 1: self.estimator.n_iter = self.n_iter self.estimator = MultilabelClassifier(self.estimator, n_jobs=1) self.estimator.fit(X, y, sample_weight=sample_weight) self.fully_fit_ = True else: self.estimator.n_iter = n_iter self.estimator.partial_fit(X, y, classes=np.unique(y), sample_weight=sample_weight) if self._iterations >= self.n_iter: self.fully_fit_ = True self._iterations += n_iter return self def configuration_fully_fitted(self): if self.estimator is None: return False elif not hasattr(self, 'fully_fit_'): return False else: return self.fully_fit_ def predict(self, X): if self.estimator is None: raise NotImplementedError() return self.estimator.predict(X) def predict_proba(self, X): if self.estimator is None: raise NotImplementedError() if self.loss in ["log", "modified_huber"]: return self.estimator.predict_proba(X) else: df = self.estimator.decision_function(X) return softmax(df) @staticmethod def get_properties(dataset_properties=None): return { 'shortname': 'SGD Classifier', 'name': 'Stochastic Gradient Descent Classifier', 'handles_regression': False, 'handles_classification': True, 'handles_multiclass': True, 'handles_multilabel': True, 'is_deterministic': True, 'input': (DENSE, SPARSE, UNSIGNED_DATA), 'output': (PREDICTIONS, ) } @staticmethod def get_hyperparameter_search_space(dataset_properties=None): cs = ConfigurationSpace() loss = cs.add_hyperparameter( CategoricalHyperparameter("loss", [ "hinge", "log", "modified_huber", "squared_hinge", "perceptron" ], default="log")) penalty = cs.add_hyperparameter( CategoricalHyperparameter("penalty", ["l1", "l2", "elasticnet"], default="l2")) alpha = cs.add_hyperparameter( UniformFloatHyperparameter("alpha", 10e-7, 1e-1, log=True, default=0.0001)) l1_ratio = cs.add_hyperparameter( UniformFloatHyperparameter("l1_ratio", 1e-9, 1, log=True, default=0.15)) fit_intercept = cs.add_hyperparameter( UnParametrizedHyperparameter("fit_intercept", "True")) n_iter = cs.add_hyperparameter( UniformIntegerHyperparameter("n_iter", 5, 1000, log=True, default=20)) epsilon = cs.add_hyperparameter( UniformFloatHyperparameter("epsilon", 1e-5, 1e-1, default=1e-4, log=True)) learning_rate = cs.add_hyperparameter( CategoricalHyperparameter("learning_rate", ["optimal", "invscaling", "constant"], default="optimal")) eta0 = cs.add_hyperparameter( UniformFloatHyperparameter("eta0", 10**-7, 0.1, default=0.01)) power_t = cs.add_hyperparameter( UniformFloatHyperparameter("power_t", 1e-5, 1, default=0.25)) average = cs.add_hyperparameter( CategoricalHyperparameter("average", ["False", "True"], default="False")) # TODO add passive/aggressive here, although not properly documented? elasticnet = EqualsCondition(l1_ratio, penalty, "elasticnet") epsilon_condition = EqualsCondition(epsilon, loss, "modified_huber") # eta0 seems to be always active according to the source code; when # learning_rate is set to optimial, eta0 is the starting value: # https://github.com/scikit-learn/scikit-learn/blob/0.15.X/sklearn/linear_model/sgd_fast.pyx #eta0_and_inv = EqualsCondition(eta0, learning_rate, "invscaling") #eta0_and_constant = EqualsCondition(eta0, learning_rate, "constant") #eta0_condition = OrConjunction(eta0_and_inv, eta0_and_constant) power_t_condition = EqualsCondition(power_t, learning_rate, "invscaling") cs.add_condition(elasticnet) cs.add_condition(epsilon_condition) cs.add_condition(power_t_condition) return cs