示例#1
0
    def test_latlon_wgs84(self):
        # Boldrewood
        lat_ref = 50.936501
        lon_ref = -1.404266

        # Highfield B35
        lat_p = 50.936870
        lon_p = -1.396295

        x, theta = latlon_to_metres(lat_p, lon_p, lat_ref, lon_ref)
        self.assertLess(x, 600.0)
        self.assertGreater(x, 500.0)
        self.assertGreater(theta, 85.0)
        self.assertLess(theta, 90.0)

        print(x, theta)

        easting = x * math.sin(math.radians(theta))
        northing = x * math.cos(math.radians(theta))
        print(northing, easting)
        lat, lon = metres_to_latlon(lat_ref, lon_ref, easting, northing)

        self.assertAlmostEqual(lat, lat_p, places=2)
        self.assertAlmostEqual(lon, lon_p, places=2)

        # Sydney
        lat_ref = -33.8559799094
        lon_ref = 151.20666584

        # Tokyo
        lat_p = 35.652832
        lon_p = 139.839478

        x, theta = latlon_to_metres(lat_p, lon_p, lat_ref, lon_ref)
        self.assertLess(x, 8.5e6)
        self.assertGreater(x, 7.5e6)
        self.assertGreater(theta, -20)
        self.assertLess(theta, 10)

        easting = x * math.sin(math.radians(theta))
        northing = x * math.cos(math.radians(theta))
        lat, lon = metres_to_latlon(lat_ref, lon_ref, easting, northing)

        self.assertAlmostEqual(lat, lat_p, places=2)
        self.assertAlmostEqual(lon, lon_p, places=2)
示例#2
0
def save_ekf_to_list(
    ekf_states: List[EkfState],
    mission: Mission,
    vehicle: Vehicle,
    dead_reckoning_dvl_list: List[SyncedOrientationBodyVelocity],
    shift_to_origin: Optional[bool] = True,
) -> List[SyncedOrientationBodyVelocity]:
    ekf_list = []
    dr_idx = 1
    for s in ekf_states:
        b = s.toSyncedOrientationBodyVelocity()

        if shift_to_origin:
            # Offset the measurements from the DVL to the robot origin
            [x_offset, y_offset, z_offset] = body_to_inertial(
                b.roll,
                b.pitch,
                b.yaw,
                vehicle.origin.surge - vehicle.dvl.surge,
                vehicle.origin.sway - vehicle.dvl.sway,
                vehicle.origin.heave - vehicle.dvl.heave,
            )
            b.northings += x_offset
            b.eastings += y_offset
            b.depth += z_offset

        # Transform to lat lon using origins
        b.latitude, b.longitude = metres_to_latlon(
            mission.origin.latitude,
            mission.origin.longitude,
            b.eastings,
            b.northings,
        )

        # Interpolate altitude from DVL
        while (dr_idx < len(dead_reckoning_dvl_list)
               and dead_reckoning_dvl_list[dr_idx].epoch_timestamp <
               b.epoch_timestamp):
            dr_idx += 1
        b.altitude = interpolate(
            b.epoch_timestamp,
            dead_reckoning_dvl_list[dr_idx - 1].epoch_timestamp,
            dead_reckoning_dvl_list[dr_idx].epoch_timestamp,
            dead_reckoning_dvl_list[dr_idx - 1].altitude,
            dead_reckoning_dvl_list[dr_idx].altitude,
        )
        ekf_list.append(b)
    return ekf_list
示例#3
0
def interpolate_sensor_list(
    sensor_list,
    sensor_name,
    sensor_offsets,
    origin_offsets,
    latlon_reference,
    _centre_list,
):
    j = 0
    [origin_x_offset, origin_y_offset, origin_z_offset] = origin_offsets
    [latitude_reference, longitude_reference] = latlon_reference
    # Check if camera activates before dvl and orientation sensors.
    start_time = _centre_list[0].epoch_timestamp
    end_time = _centre_list[-1].epoch_timestamp
    if (sensor_list[0].epoch_timestamp > end_time
            or sensor_list[-1].epoch_timestamp < start_time):
        Console.warn(
            "{} timestamps does not overlap with dead reckoning data, "
            "check timestamp_history.pdf via -v option.".format(sensor_name))
    else:
        sensor_overlap_flag = 0
        for i in range(len(sensor_list)):
            if sensor_list[i].epoch_timestamp < start_time:
                sensor_overlap_flag = 1
                pass
            else:
                if i > 0:
                    Console.warn(
                        "Deleted",
                        i,
                        "entries from sensor",
                        sensor_name,
                        ". Reason: data before start of mission",
                    )
                    del sensor_list[:i]
                break
        for i in range(len(sensor_list)):
            if j >= len(_centre_list) - 1:
                ii = len(sensor_list) - i
                if ii > 0:
                    Console.warn(
                        "Deleted",
                        ii,
                        "entries from sensor",
                        sensor_name,
                        ". Reason: data after end of mission",
                    )
                    del sensor_list[i:]
                sensor_overlap_flag = 1
                break
            while _centre_list[j].epoch_timestamp < sensor_list[
                    i].epoch_timestamp:
                if (j + 1 > len(_centre_list) - 1
                        or _centre_list[j + 1].epoch_timestamp >
                        sensor_list[-1].epoch_timestamp):
                    break
                j += 1
            # if j>=1: ?

            sensor_list[i].roll = interpolate(
                sensor_list[i].epoch_timestamp,
                _centre_list[j - 1].epoch_timestamp,
                _centre_list[j].epoch_timestamp,
                _centre_list[j - 1].roll,
                _centre_list[j].roll,
            )
            sensor_list[i].pitch = interpolate(
                sensor_list[i].epoch_timestamp,
                _centre_list[j - 1].epoch_timestamp,
                _centre_list[j].epoch_timestamp,
                _centre_list[j - 1].pitch,
                _centre_list[j].pitch,
            )
            if abs(_centre_list[j].yaw - _centre_list[j - 1].yaw) > 180:
                if _centre_list[j].yaw > _centre_list[j - 1].yaw:
                    sensor_list[i].yaw = interpolate(
                        sensor_list[i].epoch_timestamp,
                        _centre_list[j - 1].epoch_timestamp,
                        _centre_list[j].epoch_timestamp,
                        _centre_list[j - 1].yaw,
                        _centre_list[j].yaw - 360,
                    )
                else:
                    sensor_list[i].yaw = interpolate(
                        sensor_list[i].epoch_timestamp,
                        _centre_list[j - 1].epoch_timestamp,
                        _centre_list[j].epoch_timestamp,
                        _centre_list[j - 1].yaw - 360,
                        _centre_list[j].yaw,
                    )
                if sensor_list[i].yaw < 0:
                    sensor_list[i].yaw += 360
                elif sensor_list[i].yaw > 360:
                    sensor_list[i].yaw -= 360
            else:
                sensor_list[i].yaw = interpolate(
                    sensor_list[i].epoch_timestamp,
                    _centre_list[j - 1].epoch_timestamp,
                    _centre_list[j].epoch_timestamp,
                    _centre_list[j - 1].yaw,
                    _centre_list[j].yaw,
                )
            sensor_list[i].x_velocity = interpolate(
                sensor_list[i].epoch_timestamp,
                _centre_list[j - 1].epoch_timestamp,
                _centre_list[j].epoch_timestamp,
                _centre_list[j - 1].x_velocity,
                _centre_list[j].x_velocity,
            )
            sensor_list[i].y_velocity = interpolate(
                sensor_list[i].epoch_timestamp,
                _centre_list[j - 1].epoch_timestamp,
                _centre_list[j].epoch_timestamp,
                _centre_list[j - 1].y_velocity,
                _centre_list[j].y_velocity,
            )
            sensor_list[i].z_velocity = interpolate(
                sensor_list[i].epoch_timestamp,
                _centre_list[j - 1].epoch_timestamp,
                _centre_list[j].epoch_timestamp,
                _centre_list[j - 1].z_velocity,
                _centre_list[j].z_velocity,
            )
            sensor_list[i].altitude = interpolate(
                sensor_list[i].epoch_timestamp,
                _centre_list[j - 1].epoch_timestamp,
                _centre_list[j].epoch_timestamp,
                _centre_list[j - 1].altitude,
                _centre_list[j].altitude,
            )

            [x_offset, y_offset, z_offset] = body_to_inertial(
                sensor_list[i].roll,
                sensor_list[i].pitch,
                sensor_list[i].yaw,
                origin_x_offset - sensor_offsets[0],
                origin_y_offset - sensor_offsets[1],
                origin_z_offset - sensor_offsets[2],
            )

            sensor_list[i].northings = (interpolate(
                sensor_list[i].epoch_timestamp,
                _centre_list[j - 1].epoch_timestamp,
                _centre_list[j].epoch_timestamp,
                _centre_list[j - 1].northings,
                _centre_list[j].northings,
            ) - x_offset)
            sensor_list[i].eastings = (interpolate(
                sensor_list[i].epoch_timestamp,
                _centre_list[j - 1].epoch_timestamp,
                _centre_list[j].epoch_timestamp,
                _centre_list[j - 1].eastings,
                _centre_list[j].eastings,
            ) - y_offset)
            sensor_list[i].altitude = (interpolate(
                sensor_list[i].epoch_timestamp,
                _centre_list[j - 1].epoch_timestamp,
                _centre_list[j].epoch_timestamp,
                _centre_list[j - 1].altitude,
                _centre_list[j].altitude,
            ) - z_offset)
            sensor_list[i].depth = (interpolate(
                sensor_list[i].epoch_timestamp,
                _centre_list[j - 1].epoch_timestamp,
                _centre_list[j].epoch_timestamp,
                _centre_list[j - 1].depth,
                _centre_list[j].depth,
            ) - z_offset)
            [sensor_list[i].latitude,
             sensor_list[i].longitude] = metres_to_latlon(
                 latitude_reference,
                 longitude_reference,
                 sensor_list[i].eastings,
                 sensor_list[i].northings,
             )

            sensor_list[i].northings_std = interpolate_property(
                _centre_list, i, sensor_list, j, "northings_std")
            sensor_list[i].eastings_std = interpolate_property(
                _centre_list, i, sensor_list, j, "eastings_std")
            sensor_list[i].depth_std = interpolate_property(
                _centre_list, i, sensor_list, j, "depth_std")
            sensor_list[i].roll_std = interpolate_property(
                _centre_list, i, sensor_list, j, "roll_std")
            sensor_list[i].pitch_std = interpolate_property(
                _centre_list, i, sensor_list, j, "pitch_std")
            sensor_list[i].yaw_std = interpolate_property(
                _centre_list, i, sensor_list, j, "yaw_std")
            sensor_list[i].x_velocity_std = interpolate_property(
                _centre_list, i, sensor_list, j, "x_velocity_std")
            sensor_list[i].y_velocity_std = interpolate_property(
                _centre_list, i, sensor_list, j, "y_velocity_std")
            sensor_list[i].z_velocity_std = interpolate_property(
                _centre_list, i, sensor_list, j, "z_velocity_std")
            sensor_list[i].vroll_std = interpolate_property(
                _centre_list, i, sensor_list, j, "vroll_std")
            sensor_list[i].vpitch_std = interpolate_property(
                _centre_list, i, sensor_list, j, "vpitch_std")
            sensor_list[i].vyaw_std = interpolate_property(
                _centre_list, i, sensor_list, j, "vyaw_std")

            if _centre_list[j].covariance is not None:
                sensor_list[i].covariance = interpolate_covariance(
                    sensor_list[i].epoch_timestamp,
                    _centre_list[j - 1].epoch_timestamp,
                    _centre_list[j].epoch_timestamp,
                    _centre_list[j - 1].covariance,
                    _centre_list[j].covariance,
                )

        if sensor_overlap_flag == 1:
            Console.warn(
                "Sensor data from {} spans further than dead reckoning data."
                " Data outside DR is ignored.".format(sensor_name))
        Console.info("Complete interpolation and coordinate transfomations "
                     "for {}".format(sensor_name))
示例#4
0
def parse_gaps(mission, vehicle, category, ftype, outpath):

    Console.info("  Parsing GAPS data...")

    # parser meta data
    class_string = "measurement"
    sensor_string = "gaps"
    frame_string = "inertial"

    timezone = mission.usbl.timezone
    timeoffset = mission.usbl.timeoffset
    filepath = mission.usbl.filepath
    usbl_id = mission.usbl.label
    latitude_reference = mission.origin.latitude
    longitude_reference = mission.origin.longitude

    # define headers used in phins
    header_absolute = "$PTSAG"  # '<< $PTSAG' #georeferenced strings
    header_heading = "$HEHDT"  # '<< $HEHDT'

    # gaps std models
    distance_std_factor = mission.usbl.std_factor
    distance_std_offset = mission.usbl.std_offset
    broken_packet_flag = False

    # read in timezone
    timezone_offset = read_timezone(timezone)

    # convert to seconds from utc
    # timeoffset = -timezone_offset*60*60 + timeoffset

    # determine file paths
    path = (outpath / ".." / filepath).absolute()
    filepath = get_raw_folder(path)
    all_list = os.listdir(str(filepath))
    gaps_list = [line for line in all_list if ".dat" in line]
    Console.info("  " + str(len(gaps_list)) + " GAPS file(s) found")

    # extract data from files
    data_list = []
    if ftype == "acfr":
        data_list = ""
    for i in range(len(gaps_list)):
        path_gaps = filepath / gaps_list[i]

        with path_gaps.open("r", errors="ignore") as gaps:
            # initialise flag
            flag_got_time = 0
            for line in gaps.readlines():
                line_split = line.strip().split("*")
                line_split_no_checksum = line_split[0].strip().split(",")
                broken_packet_flag = False
                # print(line_split_no_checksum)
                # keep on upating ship position to find the prior interpolation
                #  value of ship coordinates
                # line_split_no_checksum[0] == header_absolute:
                if header_absolute in line_split_no_checksum[0]:
                    # start with a ship coordinate
                    if line_split_no_checksum[6] == str(
                            usbl_id) and flag_got_time == 2:
                        if (line_split_no_checksum[11] == "F"
                                and line_split_no_checksum[13] == "1"):
                            # read in date
                            yyyy = int(line_split_no_checksum[5])
                            mm = int(line_split_no_checksum[4])
                            dd = int(line_split_no_checksum[3])

                            # read in time
                            time_string = str(line_split_no_checksum[2])

                            try:
                                hour = int(time_string[0:2])
                                mins = int(time_string[2:4])
                                secs = int(time_string[4:6])
                                msec = int(time_string[7:10])
                            except ValueError:
                                broken_packet_flag = True
                                pass

                            if secs >= 60:
                                mins += 1
                                secs = 0
                                broken_packet_flag = True

                            if mins >= 60:
                                hour += 1
                                mins = 0
                                broken_packet_flag = True

                            if hour >= 24:
                                dd += 1
                                hour = 0
                                broken_packet_flag = True

                            epoch_time = date_time_to_epoch(
                                yyyy, mm, dd, hour, mins, secs,
                                timezone_offset)

                            # dt_obj = datetime(yyyy,mm,dd,hour,mins,secs)
                            # time_tuple = dt_obj.timetuple()
                            # epoch_time = time.mktime(time_tuple)
                            epoch_timestamp = epoch_time + msec / 1000 + timeoffset

                            # get position
                            latitude_negative_flag = False
                            longitude_negative_flag = False
                            latitude_string = line_split_no_checksum[7]
                            latitude_degrees = int(latitude_string[0:2])
                            latitude_minutes = float(latitude_string[2:10])
                            if line_split_no_checksum[8] == "S":
                                latitude_negative_flag = True

                            longitude_string = line_split_no_checksum[9]
                            longitude_degrees = int(longitude_string[0:3])
                            longitude_minutes = float(longitude_string[3:11])
                            if line_split_no_checksum[10] == "W":
                                longitude_negative_flag = True

                            depth = float(line_split_no_checksum[12])

                            latitude = latitude_degrees + latitude_minutes / 60.0
                            longitude = longitude_degrees + longitude_minutes / 60.0

                            if latitude_negative_flag:
                                latitude = -latitude
                            if longitude_negative_flag:
                                longitude = -longitude

                            # flag raised to proceed
                            flag_got_time = 3
                        else:
                            flag_got_time = 0

                    if line_split_no_checksum[6] == "0":
                        if flag_got_time < 3:

                            # read in date

                            yyyy = int(line_split_no_checksum[5])
                            mm = int(line_split_no_checksum[4])
                            dd = int(line_split_no_checksum[3])

                            # print(yyyy,mm,dd)
                            # read in time
                            time_string = str(line_split_no_checksum[2])
                            # print(time_string)
                            hour = int(time_string[0:2])
                            mins = int(time_string[2:4])
                            secs = int(time_string[4:6])

                            try:
                                msec = int(time_string[7:10])
                            except ValueError:
                                broken_packet_flag = True
                                pass

                            if secs >= 60:
                                mins += 1
                                secs = 0
                                broken_packet_flag = True

                            if mins >= 60:
                                hour += 1
                                mins = 0
                                broken_packet_flag = True

                            if hour >= 24:
                                dd += 1
                                hour = 0
                                broken_packet_flag = True

                            epoch_time = date_time_to_epoch(
                                yyyy, mm, dd, hour, mins, secs,
                                timezone_offset)
                            # dt_obj = datetime(yyyy,mm,dd,hour,mins,secs)
                            # time_tuple = dt_obj.timetuple()
                            # epoch_time = time.mktime(time_tuple)
                            epoch_timestamp_ship_prior = (epoch_time +
                                                          msec / 1000 +
                                                          timeoffset)

                            # get position
                            latitude_string = line_split_no_checksum[7]
                            latitude_degrees_ship_prior = int(
                                latitude_string[0:2])
                            latitude_minutes_ship_prior = float(
                                latitude_string[2:10])
                            latitude_prior = (
                                latitude_degrees_ship_prior +
                                latitude_minutes_ship_prior / 60.0)
                            if line_split_no_checksum[8] == "S":
                                latitude_prior = -latitude_prior

                            longitude_string = line_split_no_checksum[9]
                            longitude_degrees_ship_prior = int(
                                longitude_string[0:3])
                            longitude_minutes_ship_prior = float(
                                longitude_string[3:11])
                            longitude_prior = (
                                longitude_degrees_ship_prior +
                                longitude_minutes_ship_prior / 60.0)
                            if line_split_no_checksum[10] == "W":
                                longitude_prior = -longitude_prior

                            # flag raised to proceed
                            if flag_got_time < 2:
                                flag_got_time = flag_got_time + 1

                        elif flag_got_time >= 3:
                            if line_split_no_checksum[6] == "0":

                                # read in date
                                yyyy = int(line_split_no_checksum[5])
                                mm = int(line_split_no_checksum[4])
                                dd = int(line_split_no_checksum[3])

                                # read in time
                                time_string = str(line_split_no_checksum[2])
                                hour = int(time_string[0:2])
                                mins = int(time_string[2:4])
                                secs = int(time_string[4:6])
                                msec = int(time_string[7:10])

                                # calculate epoch time
                                epoch_time = date_time_to_epoch(
                                    yyyy,
                                    mm,
                                    dd,
                                    hour,
                                    mins,
                                    secs,
                                    timezone_offset,
                                )
                                # dt_obj = datetime(yyyy,mm,dd,hour,mins,secs)
                                # time_tuple = dt_obj.timetuple()
                                # epoch_time = time.mktime(time_tuple)
                                epoch_timestamp_ship_posterior = (epoch_time +
                                                                  msec / 1000 +
                                                                  timeoffset)

                                # get position
                                latitude_string = line_split_no_checksum[7]
                                latitude_degrees_ship_posterior = int(
                                    latitude_string[0:2])
                                latitude_minutes_ship_posterior = float(
                                    latitude_string[2:10])
                                latitude_posterior = (
                                    latitude_degrees_ship_posterior +
                                    latitude_minutes_ship_posterior / 60.0)
                                if line_split_no_checksum[8] == "S":
                                    latitude_posterior = -latitude_posterior

                                longitude_string = line_split_no_checksum[9]
                                longitude_degrees_ship_posterior = int(
                                    longitude_string[0:3])
                                longitude_minutes_ship_posterior = float(
                                    longitude_string[3:11])
                                longitude_posterior = (
                                    longitude_degrees_ship_posterior +
                                    longitude_minutes_ship_posterior / 60.0)
                                if line_split_no_checksum[10] == "W":
                                    longitude_posterior = -longitude_posterior

                                # flag raised to proceed
                                flag_got_time = flag_got_time + 1

                # line_split_no_checksum[0] == header_heading:
                if header_heading in line_split_no_checksum[0]:
                    if flag_got_time < 3:
                        heading_ship_prior = float(line_split_no_checksum[1])
                        if flag_got_time < 2:
                            flag_got_time = flag_got_time + 1

                    else:

                        heading_ship_posterior = float(
                            line_split_no_checksum[1])
                        flag_got_time = flag_got_time + 1

                if flag_got_time >= 5:
                    # interpolate for the ships location and heading
                    inter_time = (epoch_timestamp - epoch_timestamp_ship_prior
                                  ) / (epoch_timestamp_ship_posterior -
                                       epoch_timestamp_ship_prior)
                    longitude_ship = (inter_time *
                                      (longitude_posterior - longitude_prior) +
                                      longitude_prior)
                    latitude_ship = (inter_time *
                                     (latitude_posterior - latitude_prior) +
                                     latitude_prior)
                    heading_ship = (
                        inter_time *
                        (heading_ship_posterior - heading_ship_prior) +
                        heading_ship_prior)

                    while heading_ship > 360:
                        heading_ship = heading_ship - 360
                    while heading_ship < 0:
                        heading_ship = heading_ship + 360

                    lateral_distance, bearing = latlon_to_metres(
                        latitude, longitude, latitude_ship, longitude_ship)

                    # determine range to input to uncertainty model
                    distance = math.sqrt(lateral_distance * lateral_distance +
                                         depth * depth)
                    distance_std = distance_std_factor * distance + distance_std_offset

                    # determine uncertainty in terms of latitude and longitude
                    latitude_offset, longitude_offset = metres_to_latlon(
                        abs(latitude),
                        abs(longitude),
                        distance_std,
                        distance_std,
                    )

                    latitude_std = abs(abs(latitude) - latitude_offset)
                    longitude_std = abs(abs(longitude) - longitude_offset)

                    # calculate in metres from reference
                    lateral_distance_ship, bearing_ship = latlon_to_metres(
                        latitude_ship,
                        longitude_ship,
                        latitude_reference,
                        longitude_reference,
                    )
                    eastings_ship = (math.sin(bearing_ship * math.pi / 180.0) *
                                     lateral_distance_ship)
                    northings_ship = (
                        math.cos(bearing_ship * math.pi / 180.0) *
                        lateral_distance_ship)

                    lateral_distance_target, bearing_target = latlon_to_metres(
                        latitude,
                        longitude,
                        latitude_reference,
                        longitude_reference,
                    )
                    eastings_target = (
                        math.sin(bearing_target * math.pi / 180.0) *
                        lateral_distance_target)
                    northings_target = (
                        math.cos(bearing_target * math.pi / 180.0) *
                        lateral_distance_target)

                    if not broken_packet_flag:

                        if ftype == "oplab" and category == Category.USBL:
                            data = {
                                "epoch_timestamp":
                                float(epoch_timestamp),
                                "class":
                                class_string,
                                "sensor":
                                sensor_string,
                                "frame":
                                frame_string,
                                "category":
                                category,
                                "data_ship": [
                                    {
                                        "latitude": float(latitude_ship),
                                        "longitude": float(longitude_ship),
                                    },
                                    {
                                        "northings": float(northings_ship),
                                        "eastings": float(eastings_ship),
                                    },
                                    {
                                        "heading": float(heading_ship)
                                    },
                                ],
                                "data_target": [
                                    {
                                        "latitude": float(latitude),
                                        "latitude_std": float(latitude_std),
                                    },
                                    {
                                        "longitude": float(longitude),
                                        "longitude_std": float(longitude_std),
                                    },
                                    {
                                        "northings": float(northings_target),
                                        "northings_std": float(distance_std),
                                    },
                                    {
                                        "eastings": float(eastings_target),
                                        "eastings_std": float(distance_std),
                                    },
                                    {
                                        "depth": float(depth),
                                        "depth_std": float(distance_std),
                                    },
                                    {
                                        "distance_to_ship": float(distance)
                                    },
                                ],
                            }
                            data_list.append(data)
                        elif ftype == "oplab" and category == Category.DEPTH:
                            data = {
                                "epoch_timestamp":
                                float(epoch_timestamp),
                                "epoch_timestamp_depth":
                                float(epoch_timestamp),
                                "class":
                                class_string,
                                "sensor":
                                sensor_string,
                                "frame":
                                "inertial",
                                "category":
                                Category.DEPTH,
                                "data": [{
                                    "depth": float(depth),
                                    "depth_std": float(distance_std),
                                }],
                            }
                            data_list.append(data)

                        if ftype == "acfr":
                            data = (
                                "SSBL_FIX: " + str(float(epoch_timestamp)) +
                                " ship_x: " + str(float(northings_ship)) +
                                " ship_y: " + str(float(eastings_ship)) +
                                " target_x: " + str(float(northings_target)) +
                                " target_y: " + str(float(eastings_target)) +
                                " target_z: " + str(float(depth)) +
                                " target_hr: " + str(float(lateral_distance)) +
                                " target_sr: " + str(float(distance)) +
                                " target_bearing: " + str(float(bearing)) +
                                "\n")
                            data_list += data

                    else:
                        Console.warn("Badly formatted packet (GAPS TIME)")
                        Console.warn(line)
                        # print(hour,mins,secs)

                    # reset flag
                    flag_got_time = 0

    Console.info("  ...done parsing GAPS data.")

    return data_list
示例#5
0
def parse_usbl_dump(mission, vehicle, category, ftype, outpath):
    # parser meta data
    class_string = "measurement"
    sensor_string = "jamstec_usbl"
    frame_string = "inertial"

    # gaps std models
    distance_std_factor = mission.usbl.std_factor
    distance_std_offset = mission.usbl.std_offset

    timezone = mission.usbl.timezone
    timeoffset = mission.usbl.timeoffset
    filepath = mission.usbl.filepath
    filename = mission.usbl.filename
    label = mission.usbl.label

    filepath = get_raw_folder(outpath / ".." / filepath)

    latitude_reference = mission.origin.latitude
    longitude_reference = mission.origin.longitude

    # read in timezone
    timezone_offset = read_timezone(timezone)

    # convert to seconds from utc
    # timeoffset = -timezone_offset*60*60 + timeoffset

    # extract data from files
    Console.info("... parsing usbl dump")
    data_list = []
    if ftype == "acfr":
        data_list = ""
    usbl_file = filepath / filename
    with usbl_file.open("r", encoding="utf-8", errors="ignore") as filein:

        for line in filein.readlines():
            line_split = line.strip().split(",")

            if line_split[2] == label:

                date = line_split[0].split("-")

                # read in date
                yyyy = int(date[0])
                mm = int(date[1])
                dd = int(date[2])

                timestamp = line_split[1].split(":")

                # read in time
                hour = int(timestamp[0])
                mins = int(timestamp[1])
                secs = int(timestamp[2])
                msec = 0

                epoch_time = date_time_to_epoch(
                    yyyy, mm, dd, hour, mins, secs, timezone_offset
                )
                # dt_obj = datetime(yyyy,mm,dd,hour,mins,secs)
                # time_tuple = dt_obj.timetuple()
                # epoch_time = time.mktime(time_tuple)
                epoch_timestamp = epoch_time + msec / 1000 + timeoffset

                if line_split[6] != "":

                    # get position
                    latitude_full = line_split[6].split(" ")
                    latitude_list = latitude_full[0].split("-")
                    latitude_degrees = int(latitude_list[0])
                    latitude_minutes = float(latitude_list[1])

                    if latitude_full[1] != "N":
                        latitude_degrees = latitude_degrees * -1  # southern hemisphere

                    latitude = latitude_degrees + latitude_minutes / 60

                    longitude_full = line_split[7].split(" ")
                    longitude_list = longitude_full[0].split("-")
                    longitude_degrees = int(longitude_list[0])
                    longitude_minutes = float(longitude_list[1])

                    if longitude_full[1] != "E":
                        longitude_degrees = (
                            longitude_degrees * -1
                        )  # southern hemisphere

                    longitude = longitude_degrees + longitude_minutes / 60

                    depth_full = line_split[8].split("=")
                    depth = float(depth_full[1])

                    distance_full = line_split[11].split("=")
                    distance = float(distance_full[1])

                    distance_std = distance_std_factor * distance + distance_std_offset

                    lateral_distance_full = line_split[9].split("=")
                    lateral_distance = float(lateral_distance_full[1])

                    bearing_full = line_split[10].split("=")
                    bearing = float(bearing_full[1])

                    # determine uncertainty in terms of latitude and longitude
                    latitude_offset, longitude_offset = metres_to_latlon(
                        latitude, longitude, distance_std, distance_std
                    )

                    latitude_std = latitude - latitude_offset
                    longitude_std = longitude - longitude_offset

                    # calculate in metres from reference
                    eastings_ship = 0
                    northings_ship = 0
                    latitude_ship = 0
                    longitude_ship = 0
                    heading_ship = 0

                    lateral_distance_target, bearing_target = latlon_to_metres(
                        latitude, longitude, latitude_reference, longitude_reference,
                    )
                    eastings_target = (
                        math.sin(bearing_target * math.pi / 180.0)
                        * lateral_distance_target
                    )
                    northings_target = (
                        math.cos(bearing_target * math.pi / 180.0)
                        * lateral_distance_target
                    )

                    if ftype == "oplab":
                        data = {
                            "epoch_timestamp": float(epoch_timestamp),
                            "class": class_string,
                            "sensor": sensor_string,
                            "frame": frame_string,
                            "category": category,
                            "data_ship": [
                                {
                                    "latitude": float(latitude_ship),
                                    "longitude": float(longitude_ship),
                                },
                                {
                                    "northings": float(northings_ship),
                                    "eastings": float(eastings_ship),
                                },
                                {"heading": float(heading_ship)},
                            ],
                            "data_target": [
                                {
                                    "latitude": float(latitude),
                                    "latitude_std": float(latitude_std),
                                },
                                {
                                    "longitude": float(longitude),
                                    "longitude_std": float(longitude_std),
                                },
                                {
                                    "northings": float(northings_target),
                                    "northings_std": float(distance_std),
                                },
                                {
                                    "eastings": float(eastings_target),
                                    "eastings_std": float(distance_std),
                                },
                                {
                                    "depth": float(depth),
                                    "depth_std": float(distance_std),
                                },
                                {"distance_to_ship": float(distance)},
                            ],
                        }
                        data_list.append(data)

                    if ftype == "acfr":
                        data = (
                            "SSBL_FIX: "
                            + str(float(epoch_timestamp))
                            + " ship_x: "
                            + str(float(northings_ship))
                            + " ship_y: "
                            + str(float(eastings_ship))
                            + " target_x: "
                            + str(float(northings_target))
                            + " target_y: "
                            + str(float(eastings_target))
                            + " target_z: "
                            + str(float(depth))
                            + " target_hr: "
                            + str(float(lateral_distance))
                            + " target_sr: "
                            + str(float(distance))
                            + " target_bearing: "
                            + str(float(bearing))
                            + "\n"
                        )
                        data_list += data

    return data_list