示例#1
0
        def optimize_h_with_bayes_estimator(*args):
            """Assumes that optimal_h calculates gain-optimal value analytically."""
            ys = flatten_first_two_dims(
                self.sample_predictive_y0(
                    *args,
                    nsamples_theta=self.H_NSAMPLES_UTILITY_TERM_THETA,
                    nsamples_y=self.H_NSAMPLES_UTILITY_TERM_Y))
            h = self.optimal_h_bayes_estimator(ys)

            if optimize_h_with_bayes_estimator.counter < 3 and not is_valid(h):
                print(
                    "WARNING: your optimal_h_bayes_estimator=%s returns invalid decisions! Are we good here?"
                    % self.optimal_h_bayes_estimator.__name__)
            optimize_h_with_bayes_estimator.counter += 1
            return h
示例#2
0
def optimal_h_numerically_scipy(ys,
                                u,
                                weights=None,
                                utility_aggregator=gain_weighted,
                                data_mask=None,
                                max_niter=10000,
                                tol=1e-4,
                                tol_goal=-1,
                                lr=0.01,
                                start=None,
                                optimizer="COBYLA",
                                verbose=False,
                                debug=False,
                                sparse_verbose=True):
    """ Using numerical optimization (SciPy) finds optimal h for utility-dependent term expressed by utility_aggregator.

        Compatible with optimal_h_numerically.
    """
    printv = lambda txt: (print2("[optimal_h_numerically_scipy]" + txt)
                          if verbose else None)
    if sparse_verbose and not verbose:
        printv = lambda txt: sparse_print(
            "optimal_h_numerically_scipy", "[optimal_h_numerically_scipy]" +
            txt, 100)
    printd = lambda txt: (print2("[optimal_h_numerically_scipy]" + txt)
                          if debug else None)

    assert len( signature(utility_aggregator).parameters )==3, \
            "[optimal_h_numerically_scipy] Your utility_aggregator=%s takes wrong number of params! does not support weights?" % utility_aggregator

    env = torch if "cpu" in str(ys.device) else torch.cuda
    if data_mask is None:
        data_mask = (torch.ones(ys.shape[1:]) if len(ys.shape) > 1 else
                     torch.tensor(1)).type(env.ByteTensor)

    if weights is None: weights = torch.ones_like(ys)
    weights /= weights.sum(0)  #enforce normalization
    weights = torch.tensor(tonumpy(weights), requires_grad=False)

    y = torch.tensor(tonumpy(ys), requires_grad=False)

    if start is None:
        h = (y * weights).sum(0)  #start from E(y)
    elif start is None or not is_valid(torch.tensor(start)):
        printd("start point is invalid. ignoring!")
        h = (y * weights).sum(0)  #start from E(y)
    else:
        h = start

    start = time.time()
    x0 = tonumpy(h).flatten()
    fun = lambda h: -utility_aggregator(
        u(torch.tensor(h.reshape(y.shape[1:]), dtype=y.dtype), y), weights,
        data_mask).item()
    result = _scipy_minimize(fun,
                             x0,
                             method=optimizer,
                             max_niter=max_niter,
                             tol=tol,
                             tol_goal=tol_goal,
                             lr=lr,
                             debug=debug)
    if verbose:
        printv(
            "[%.4f][optimizer=%s ys=%s max_niter=%i tol=%s tol_goal=%s lr=%s u=%s->%s] %s"
            % (time.time() - start, optimizer, tuple(ys.shape), max_niter, tol,
               tol_goal, lr, u.__name__, utility_aggregator.__name__,
               str(result).replace("\n", ";")[:200]))
    return torch.tensor(result["x"].reshape(y.shape[1:]), dtype=ys.dtype)
示例#3
0
def optimal_h_numerically_ty(ys,
                             u,
                             utility_aggregator=gain,
                             data_mask=None,
                             max_niter=10000,
                             tol=1e-4,
                             tol_goal=-1,
                             lr=0.01,
                             start=None,
                             optimizer=torch.optim.Adam,
                             verbose=False,
                             debug=False,
                             sparse_verbose=True):
    """ Using numerical optimization finds optimal h for utility-dependent term expressed by utility_aggregator.
    
        Args:
            ys: Samples matrix. The dimensionality should match what utility_aggregator takes:
                #y-samples x #theta-samples x data-size.
            u:  Utility function u(h, ys) -> utilities matrix (the same shape as ys).
            utility_aggregator: A function that calculate utility-dependent term. 
                                Should take exactly 2 params: utilites and data_mask.
            data_mask: A mask passed to utility_aggregator.
    """
    printv = lambda txt: (print2("[optimal_h_numerically_ty] " + txt)
                          if verbose else None)
    if sparse_verbose and not verbose:
        printv = lambda txt: sparse_print(
            "optimal_h_numerically_ty", "[optimal_h_numerically_ty]" + txt, 100
        )
    printd = lambda txt: (print2("[optimal_h_numerically_ty] " + txt)
                          if debug else None)

    assert len( signature(utility_aggregator).parameters )==2, \
            "[optimal_h_numerically_ty] Your utility_aggregator=%s takes wrong number of params! perhaps requires weights?" % utility_aggregator

    env = torch if "cpu" in str(ys.device) else torch.cuda
    if data_mask is None:  #No data mask provided. Using all data points
        data_mask = (torch.ones(ys.shape[2:]) if len(ys.shape) > 2 else
                     torch.tensor(1)).type(env.ByteTensor)

    y = torch.tensor(tonumpy(ys), requires_grad=False)

    if start is None:
        h = y.mean(0).mean(0).clone().detach().requires_grad_(
            True)  #start from E(y)
    elif start is None or not is_valid(torch.tensor(start)):
        printd("start point is invalid. ignoring!")
        h = y.mean(0).mean(0).clone().detach().requires_grad_(
            True)  #start from E(y)
    else:
        h = torch.tensor(tonumpy(start), requires_grad=True)

    optimizer = optimizer([h], lr=lr)
    prev_h, prev_goal = torch.tensor(tonumpy(h)), float("inf")
    start = time.time()
    for i in range(max_niter):

        goal = -utility_aggregator(u(h, y), data_mask)
        optimizer.zero_grad()
        goal.backward(retain_graph=False)
        optimizer.step()

        #check for convergence:
        if (prev_h - h).abs().max() <= tol:
            printv(
                "[%.2f][ys=%s max_niter=%i tol=%s tol_goal=%s lr=%s u=%s->%s] Finished at %i. iter (tolerance reached): obj=%.4f max-err=%.8f mean-err=%.8f"
                % (time.time() - start, tuple(
                    ys.shape), max_niter, tol, tol_goal, lr, u.__name__,
                   utility_aggregator.__name__, i + 1, goal.item(),
                   (prev_h - h).abs().max(), (prev_h - h).abs().mean()))
            break
        if abs(prev_goal - goal.item()) <= tol_goal:
            printv(
                "[%.2f][ys=%s max_niter=%i tol=%s tol_goal=%s lr=%s u=%s->%s] Finished at %i. iter (objective tolerance reached): obj=%.4f max-err=%.8f mean-err=%.8f"
                % (time.time() - start, tuple(
                    ys.shape), max_niter, tol, tol_goal, lr, u.__name__,
                   utility_aggregator.__name__, i + 1, goal.item(),
                   (prev_h - h).abs().max(), (prev_h - h).abs().mean()))
            break
        if i >= max_niter - 1:
            printv(
                "[%.2f][ys=%s max_niter=%i tol=%s tol_goal=%s lr=%s u=%s->%s] Finished at %i. iter (max number reached): obj=%.4f max-err=%.8f mean-err=%.8f"
                % (time.time() - start, tuple(
                    ys.shape), max_niter, tol, tol_goal, lr, u.__name__,
                   utility_aggregator.__name__, i + 1, goal.item(),
                   (prev_h - h).abs().max(), (prev_h - h).abs().mean()))
            break

        if i % (max_niter // 10) == 0:
            printd("[%.2f] iter %i: objective=%.4f err=%.6f" %
                   (time.time() - start, i, goal.item(),
                    (prev_h - h).abs().max()))

        prev_h = torch.tensor(tonumpy(h))
        prev_goal = goal.item()

    return h