示例#1
0
文件: hf.py 项目: obackhouse/auxgf
    def _run(self, **kwargs):
        if self.with_df:
            self._pyscf = self._pyscf.density_fit()
            self._pyscf.with_df.auxbasis = self.auxbasis

        self._pyscf.run(**kwargs)

        if self.check_stability:
            for niter in range(1, self.stability_cycles + 1):
                stability = self.stability()

                if isinstance(stability, tuple):
                    internal, external = stability
                else:
                    internal = stability

                if np.allclose(internal, self._pyscf.mo_coeff):
                    if niter == self.stability_cycles:
                        if mpi.rank:
                            log.warn('Internal stability in HF not resolved.')
                    break
                else:
                    rdm1 = self._pyscf.make_rdm1(internal, self._pyscf.mo_occ)

                self._pyscf.scf(dm0=rdm1)

        if not self.with_df:
            self._eri_ao = util.restore(1, self.mol._pyscf.intor('int2e'),
                                        self.nao)
        else:
            self._eri_ao = lib.unpack_tril(self._pyscf.with_df._cderi)
示例#2
0
def dgemm(a, b, c=None, alpha=1.0, beta=0.0):
    ''' Performs dgemm in Fortran memory alignment without copying.
        Input matrix should be contiguous (either F or C).
    
    Parameters
    ----------
    a : array
        input matrix a
    b : array
        input matrix b
    c : array, optional
        output matrix c, if None then it is allocated inside the
        function, default None
    alpha : float, optional
        scalar factor for matrix a
    beta : float, optional
        scalar factor for matrix c

    Returns
    -------
    c : ndarray
        output matrix
    '''

    #FIXME: this needs testing better - currently this should only be
    # used where it has been tested against np.dot specifically for
    # that use case!

    if (not _is_contiguous(a)) or (not _is_contiguous(b)):
        log.warn('DGEMM called on non-contiguous data')

    m, k = a.shape
    n = b.shape[1]
    assert k == b.shape[0]

    a, ta = _reorder_fortran(a)
    b, tb = _reorder_fortran(b)

    if c is None:
        c = np.zeros((m, n), dtype=np.float64, order='C')

    if m == 0 or n == 0 or k == 0:
        return c

    c, tc = _reorder_fortran(c)

    c = blas.dgemm(alpha=alpha,
                   a=b,
                   b=a,
                   c=c,
                   beta=beta,
                   trans_a=not tb,
                   trans_b=not ta)

    c, tc = _reorder_c(c)

    return c
示例#3
0
    def __init__(self, uhf, **kwargs):
        super().__init__(uhf, **kwargs)

        self.options = _set_options(self.options, **kwargs)

        if mpi.mpi is None:
            log.warn(
                'No MPI4Py installation detected, OptUAGF2 will therefore run in serial.'
            )

        self.setup()
示例#4
0
def zgemm(a, b, c=None, alpha=1.0 + 0.0j, beta=0.0 + 0.0j):
    ''' Performs zgemm in Fortran memory alignment without copying.
        Input matrix should be contiguous (either F or C).

    Parameters
    ----------
    a : array
        input matrix a
    b : array
        input matrix b
    c : array, optional
        output matrix c, if None then it is allocated inside the
        function, default None
    alpha : complex, optional
        scalar factor for matrix a
    beta : float, optional
        scalar factor for matrix c

    Returns
    -------
    c : ndarray
        output matrix
    '''

    if (not _is_contiguous(a)) or (not _is_contiguous(b)):
        log.warn('ZGEMM called on non-contiguous data')

    m, k = a.shape
    n = b.shape[1]
    assert k == b.shape[0]

    a, ta = _reorder_fortran(a)
    b, tb = _reorder_fortran(b)

    if c is None:
        c = np.zeros((m, n), dtype=np.complex128, order='C')

    if m == 0 or n == 0 or k == 0:
        return c

    c, tc = _reorder_fortran(c)

    c = blas.zgemm(alpha=alpha,
                   a=b,
                   b=a,
                   c=c,
                   beta=beta,
                   trans_a=not tb,
                   trans_b=not ta)

    c, tc = _reorder_c(c)

    return c
示例#5
0
文件: hf.py 项目: obackhouse/auxgf
    def run(self, **kwargs):
        if self.disable_omp:
            with lib.with_omp_threads(1):
                self._run(**kwargs)
        else:
            self._run(**kwargs)

        if not self._pyscf.converged:
            if mpi.rank:
                log.warn('%s did not converge.' % self.__class__.__name__)

        return self
示例#6
0
def cholesky_qr(a):
    ''' Performs the Cholesky QR decomposition. This can be unstable.
    '''

    try:
        x = np.dot(a.T, a)
        r = np.linalg.cholesky(x).T
        q = np.dot(a, np.linalg.inv(r))

    except np.linalg.LinAlgError:  # pragma: no cover
        if mpi.rank:
            log.warn('Matrix not positive definite in Cholesky step of '
                     'util.linalg.qholesky_qr - falling back to numpy.')
        return np.linalg.qr(a)

    return q, r
示例#7
0
文件: eig.py 项目: obackhouse/auxgf
def davidson(se, h_phys, chempot=0.0, nroots=1, which='SM', tol=1e-14, maxiter=None, ntrial=None):
    ''' Diagonalise the auxiliary + physical space via a
        Davidson iterative eigensolver.
    '''

    _check_dims(se, h_phys)
    ndim = se.nphys + se.naux

    if maxiter is None: maxiter = 10 * ndim
    if ntrial is None: ntrial = min(ndim, max(2*nroots+1, 20))

    abs_op = np.absolute if which in ['SM', 'LM'] else lambda x: x
    order = 1 if which in ['SM', 'SA'] else -1

    matvec = lambda x : se.dot(h_phys, np.asarray(x))

    diag = np.concatenate([np.diag(h_phys), se.e])

    guess = [np.zeros((ndim)) for n in range(nroots)]
    mask = np.argsort(abs_op(diag))[::order]
    for i in range(nroots):
        guess[i][mask[i]] = 1

    def pick(w, v, nroots, callback):
        mask = np.argsort(abs_op(w))
        mask = mask[::order]
        w = w[mask]
        v = v[:,mask]
        return w, v, 0

    conv, w, v = util.davidson(matvec, guess, diag, tol=tol, nroots=nroots, 
                               max_space=ntrial, max_cycle=maxiter, pick=pick)

    if not np.all(conv):
        log.warn('Davidson solver did not converge.')

    return w, v
示例#8
0
 def test_warn(self):
     with self.assertWarns(Warning):
         log.warn('This is a test')